{"title":"多尺度融合关注机制下基于小通道卷积神经网络的齿轮故障诊断","authors":"Xuejiao Du, Bowen Liu, Jingbo Gai, Yulin Zhang, Xiangfeng Shi, Hailong Tian","doi":"10.1002/qre.3631","DOIUrl":null,"url":null,"abstract":"Due to the insufficient feature learning ability and the bloated network structure, the gear fault diagnosis methods based on traditional deep neural networks always suffer from poor diagnosis accuracy and low diagnosis efficiency. Therefore, a small channel convolutional neural network under the multiscale fusion attention mechanism (MSFAM‐SCCNN) is proposed in this paper. First, a small channel convolutional neural network (SCCNN) model is constructed based on the framework of the traditional AlexNet model in order to lightweight the network structure and improve the learning efficiency. Then, a novel multiscale fusion attention mechanism (MSFAM) is embedded into the SCCNN model, which utilizes multiscale striped convolutional windows to extract key features from three dimensions, including temporal, spatial, and channel‐wise, resulting in more precise feature mining. Finally, the performance of the MSFAM‐ SCCNN model is verified using the vibration data of tooth‐broken gears obtained by a self‐designed experimental bench of an ammunition supply and delivery system.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gear fault diagnosis based on small channel convolutional neural network under multiscale fusion attention mechanism\",\"authors\":\"Xuejiao Du, Bowen Liu, Jingbo Gai, Yulin Zhang, Xiangfeng Shi, Hailong Tian\",\"doi\":\"10.1002/qre.3631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the insufficient feature learning ability and the bloated network structure, the gear fault diagnosis methods based on traditional deep neural networks always suffer from poor diagnosis accuracy and low diagnosis efficiency. Therefore, a small channel convolutional neural network under the multiscale fusion attention mechanism (MSFAM‐SCCNN) is proposed in this paper. First, a small channel convolutional neural network (SCCNN) model is constructed based on the framework of the traditional AlexNet model in order to lightweight the network structure and improve the learning efficiency. Then, a novel multiscale fusion attention mechanism (MSFAM) is embedded into the SCCNN model, which utilizes multiscale striped convolutional windows to extract key features from three dimensions, including temporal, spatial, and channel‐wise, resulting in more precise feature mining. Finally, the performance of the MSFAM‐ SCCNN model is verified using the vibration data of tooth‐broken gears obtained by a self‐designed experimental bench of an ammunition supply and delivery system.\",\"PeriodicalId\":56088,\"journal\":{\"name\":\"Quality and Reliability Engineering International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quality and Reliability Engineering International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/qre.3631\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3631","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Gear fault diagnosis based on small channel convolutional neural network under multiscale fusion attention mechanism
Due to the insufficient feature learning ability and the bloated network structure, the gear fault diagnosis methods based on traditional deep neural networks always suffer from poor diagnosis accuracy and low diagnosis efficiency. Therefore, a small channel convolutional neural network under the multiscale fusion attention mechanism (MSFAM‐SCCNN) is proposed in this paper. First, a small channel convolutional neural network (SCCNN) model is constructed based on the framework of the traditional AlexNet model in order to lightweight the network structure and improve the learning efficiency. Then, a novel multiscale fusion attention mechanism (MSFAM) is embedded into the SCCNN model, which utilizes multiscale striped convolutional windows to extract key features from three dimensions, including temporal, spatial, and channel‐wise, resulting in more precise feature mining. Finally, the performance of the MSFAM‐ SCCNN model is verified using the vibration data of tooth‐broken gears obtained by a self‐designed experimental bench of an ammunition supply and delivery system.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.