论热带离散最佳近似问题的求解

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Soft Computing Pub Date : 2024-08-05 DOI:10.1007/s00500-024-09940-4
Nikolai Krivulin
{"title":"论热带离散最佳近似问题的求解","authors":"Nikolai Krivulin","doi":"10.1007/s00500-024-09940-4","DOIUrl":null,"url":null,"abstract":"<p>We consider a discrete best approximation problem formulated in the framework of tropical algebra, which deals with the theory and applications of algebraic systems with idempotent operations. Given a set of samples of input and output of an unknown function, the problem is to construct a generalized tropical Puiseux polynomial that best approximates the function in the sense of a tropical distance function. The construction of an approximate polynomial involves the evaluation of both unknown coefficient and exponent of each monomial in the polynomial. To solve the approximation problem, we first reduce the problem to an equation in unknown vector of coefficients, which is given by a matrix with entries parameterized by unknown exponents. We derive a best approximate solution of the equation, which yields both vector of coefficients and approximation error parameterized by the exponents. Optimal values of exponents are found by minimization of the approximation error, which is transformed into minimization of a function of exponents over all partitions of a finite set. We solve this minimization problem in terms of max-plus algebra (where addition is defined as maximum and multiplication as arithmetic addition) by using a computational procedure based on the agglomerative clustering technique. This solution is extended to the minimization problem of finding optimal exponents in the polynomial in terms of max-algebra (where addition is defined as maximum). The results obtained are applied to develop new solutions for conventional problems of discrete best Chebyshev approximation of real functions by piecewise linear functions and piecewise Puiseux polynomials. We discuss computational complexity of the proposed solution and estimate upper bounds on the computational time. We demonstrate examples of approximation problems solved in terms of max-plus and max-algebra, and give graphical illustrations.</p>","PeriodicalId":22039,"journal":{"name":"Soft Computing","volume":"68 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On solution of tropical discrete best approximation problems\",\"authors\":\"Nikolai Krivulin\",\"doi\":\"10.1007/s00500-024-09940-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider a discrete best approximation problem formulated in the framework of tropical algebra, which deals with the theory and applications of algebraic systems with idempotent operations. Given a set of samples of input and output of an unknown function, the problem is to construct a generalized tropical Puiseux polynomial that best approximates the function in the sense of a tropical distance function. The construction of an approximate polynomial involves the evaluation of both unknown coefficient and exponent of each monomial in the polynomial. To solve the approximation problem, we first reduce the problem to an equation in unknown vector of coefficients, which is given by a matrix with entries parameterized by unknown exponents. We derive a best approximate solution of the equation, which yields both vector of coefficients and approximation error parameterized by the exponents. Optimal values of exponents are found by minimization of the approximation error, which is transformed into minimization of a function of exponents over all partitions of a finite set. We solve this minimization problem in terms of max-plus algebra (where addition is defined as maximum and multiplication as arithmetic addition) by using a computational procedure based on the agglomerative clustering technique. This solution is extended to the minimization problem of finding optimal exponents in the polynomial in terms of max-algebra (where addition is defined as maximum). The results obtained are applied to develop new solutions for conventional problems of discrete best Chebyshev approximation of real functions by piecewise linear functions and piecewise Puiseux polynomials. We discuss computational complexity of the proposed solution and estimate upper bounds on the computational time. We demonstrate examples of approximation problems solved in terms of max-plus and max-algebra, and give graphical illustrations.</p>\",\"PeriodicalId\":22039,\"journal\":{\"name\":\"Soft Computing\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00500-024-09940-4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00500-024-09940-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是在热带代数框架下提出的离散最佳近似问题,热带代数涉及具有幂等运算的代数系统的理论和应用。给定一组未知函数的输入和输出样本,问题是构造一个广义的热带普伊塞多项式,在热带距离函数的意义上对函数进行最佳逼近。近似多项式的构建涉及对多项式中每个单项式的未知系数和指数的评估。为了解决近似问题,我们首先将问题简化为一个未知系数向量方程,该方程由一个矩阵给出,矩阵的条目由未知指数参数化。我们推导出方程的最佳近似解,它既能得出系数向量,也能得出以指数为参数的近似误差。通过近似误差的最小化可以找到指数的最佳值,而近似误差的最小化可以转化为有限集合所有分区中指数函数的最小化。我们通过使用基于聚类技术的计算程序,用最大加代数(加法定义为最大值,乘法定义为算术加法)来解决这个最小化问题。这一解决方案被扩展到以最大代数(加法被定义为最大值)求多项式中最优指数的最小化问题。所获得的结果被应用于用分片线性函数和分片普伊塞克斯多项式对实函数进行离散最佳切比雪夫近似的传统问题的新解决方案。我们讨论了所提解决方案的计算复杂性,并估算了计算时间的上限。我们演示了用 max-plus 和 max-algebra 求解近似问题的例子,并给出了图表说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On solution of tropical discrete best approximation problems

We consider a discrete best approximation problem formulated in the framework of tropical algebra, which deals with the theory and applications of algebraic systems with idempotent operations. Given a set of samples of input and output of an unknown function, the problem is to construct a generalized tropical Puiseux polynomial that best approximates the function in the sense of a tropical distance function. The construction of an approximate polynomial involves the evaluation of both unknown coefficient and exponent of each monomial in the polynomial. To solve the approximation problem, we first reduce the problem to an equation in unknown vector of coefficients, which is given by a matrix with entries parameterized by unknown exponents. We derive a best approximate solution of the equation, which yields both vector of coefficients and approximation error parameterized by the exponents. Optimal values of exponents are found by minimization of the approximation error, which is transformed into minimization of a function of exponents over all partitions of a finite set. We solve this minimization problem in terms of max-plus algebra (where addition is defined as maximum and multiplication as arithmetic addition) by using a computational procedure based on the agglomerative clustering technique. This solution is extended to the minimization problem of finding optimal exponents in the polynomial in terms of max-algebra (where addition is defined as maximum). The results obtained are applied to develop new solutions for conventional problems of discrete best Chebyshev approximation of real functions by piecewise linear functions and piecewise Puiseux polynomials. We discuss computational complexity of the proposed solution and estimate upper bounds on the computational time. We demonstrate examples of approximation problems solved in terms of max-plus and max-algebra, and give graphical illustrations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soft Computing
Soft Computing 工程技术-计算机:跨学科应用
CiteScore
8.10
自引率
9.80%
发文量
927
审稿时长
7.3 months
期刊介绍: Soft Computing is dedicated to system solutions based on soft computing techniques. It provides rapid dissemination of important results in soft computing technologies, a fusion of research in evolutionary algorithms and genetic programming, neural science and neural net systems, fuzzy set theory and fuzzy systems, and chaos theory and chaotic systems. Soft Computing encourages the integration of soft computing techniques and tools into both everyday and advanced applications. By linking the ideas and techniques of soft computing with other disciplines, the journal serves as a unifying platform that fosters comparisons, extensions, and new applications. As a result, the journal is an international forum for all scientists and engineers engaged in research and development in this fast growing field.
期刊最新文献
Handwritten text recognition and information extraction from ancient manuscripts using deep convolutional and recurrent neural network Optimizing green solid transportation with carbon cap and trade: a multi-objective two-stage approach in a type-2 Pythagorean fuzzy context Production chain modeling based on learning flow stochastic petri nets Multi-population multi-strategy differential evolution algorithm with dynamic population size adjustment Dynamic parameter identification of modular robot manipulators based on hybrid optimization strategy: genetic algorithm and least squares method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1