{"title":"用于室内广播网络的波分复用可见光通信系统的能效优化方法","authors":"Dayu Shi;Xun Zhang;Ziqi Liu;Xuanbang Chen;Jianghao Li;Xiaodong Liu;William Shieh","doi":"10.1109/TBC.2024.3407606","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel approach to optimize energy efficiency in wavelength division multiplexing (WDM) Visible Light Communication (VLC) systems designed for indoor broadcasting networks. A physics-based LED model is integrated into system energy efficiency optimization, enabling quantitative analysis of the critical issue of VLC energy efficiency: the nonlinear interplay between illumination and communication performance. The optimization jointly incorporates constraints on communication quality of each channel, and illumination performance, standardized by the International Commission on Illumination (CIE). The formulated nonlinear optimization problem is solved by the Sequential Quadratic Programming (SQP) algorithm in an experiment-based simulation. An integrated Red-Green-Blue-Yellow Light Emitting Diode (RGBY-LED) is measured for model calibration and three different scenarios are simulated to evaluate the generality of the proposed method. Results demonstrate a double enhancement in performance and a high versatility in accommodating various scenarios. Furthermore, it highlights the importance of balancing communication and illumination imperatives in VLC systems, challenging conventional perceptions focused solely on minimizing power consumption.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"70 4","pages":"1207-1220"},"PeriodicalIF":3.2000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy Efficiency Optimization Method of WDM Visible Light Communication System for Indoor Broadcasting Networks\",\"authors\":\"Dayu Shi;Xun Zhang;Ziqi Liu;Xuanbang Chen;Jianghao Li;Xiaodong Liu;William Shieh\",\"doi\":\"10.1109/TBC.2024.3407606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel approach to optimize energy efficiency in wavelength division multiplexing (WDM) Visible Light Communication (VLC) systems designed for indoor broadcasting networks. A physics-based LED model is integrated into system energy efficiency optimization, enabling quantitative analysis of the critical issue of VLC energy efficiency: the nonlinear interplay between illumination and communication performance. The optimization jointly incorporates constraints on communication quality of each channel, and illumination performance, standardized by the International Commission on Illumination (CIE). The formulated nonlinear optimization problem is solved by the Sequential Quadratic Programming (SQP) algorithm in an experiment-based simulation. An integrated Red-Green-Blue-Yellow Light Emitting Diode (RGBY-LED) is measured for model calibration and three different scenarios are simulated to evaluate the generality of the proposed method. Results demonstrate a double enhancement in performance and a high versatility in accommodating various scenarios. Furthermore, it highlights the importance of balancing communication and illumination imperatives in VLC systems, challenging conventional perceptions focused solely on minimizing power consumption.\",\"PeriodicalId\":13159,\"journal\":{\"name\":\"IEEE Transactions on Broadcasting\",\"volume\":\"70 4\",\"pages\":\"1207-1220\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Broadcasting\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10556783/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10556783/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Energy Efficiency Optimization Method of WDM Visible Light Communication System for Indoor Broadcasting Networks
This paper introduces a novel approach to optimize energy efficiency in wavelength division multiplexing (WDM) Visible Light Communication (VLC) systems designed for indoor broadcasting networks. A physics-based LED model is integrated into system energy efficiency optimization, enabling quantitative analysis of the critical issue of VLC energy efficiency: the nonlinear interplay between illumination and communication performance. The optimization jointly incorporates constraints on communication quality of each channel, and illumination performance, standardized by the International Commission on Illumination (CIE). The formulated nonlinear optimization problem is solved by the Sequential Quadratic Programming (SQP) algorithm in an experiment-based simulation. An integrated Red-Green-Blue-Yellow Light Emitting Diode (RGBY-LED) is measured for model calibration and three different scenarios are simulated to evaluate the generality of the proposed method. Results demonstrate a double enhancement in performance and a high versatility in accommodating various scenarios. Furthermore, it highlights the importance of balancing communication and illumination imperatives in VLC systems, challenging conventional perceptions focused solely on minimizing power consumption.
期刊介绍:
The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”