张量加速器的 LLM 辅助编译

Charles Hong, Sahil Bhatia, Altan Haan, Shengjun Kris Dong, Dima Nikiforov, Alvin Cheung, Yakun Sophia Shao
{"title":"张量加速器的 LLM 辅助编译","authors":"Charles Hong, Sahil Bhatia, Altan Haan, Shengjun Kris Dong, Dima Nikiforov, Alvin Cheung, Yakun Sophia Shao","doi":"arxiv-2408.03408","DOIUrl":null,"url":null,"abstract":"Hardware accelerators, in particular accelerators for tensor processing, have\nmany potential application domains. However, they currently lack the software\ninfrastructure to support the majority of domains outside of deep learning.\nFurthermore, a compiler that can easily be updated to reflect changes at both\napplication and hardware levels would enable more agile development and design\nspace exploration of accelerators, allowing hardware designers to realize\ncloser-to-optimal performance. In this work, we discuss how large language\nmodels (LLMs) could be leveraged to build such a compiler. Specifically, we\ndemonstrate the ability of GPT-4 to achieve high pass rates in translating code\nto the Gemmini accelerator, and prototype a technique for decomposing\ntranslation into smaller, more LLM-friendly steps. Additionally, we propose a\n2-phase workflow for utilizing LLMs to generate hardware-optimized code.","PeriodicalId":501197,"journal":{"name":"arXiv - CS - Programming Languages","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LLM-Aided Compilation for Tensor Accelerators\",\"authors\":\"Charles Hong, Sahil Bhatia, Altan Haan, Shengjun Kris Dong, Dima Nikiforov, Alvin Cheung, Yakun Sophia Shao\",\"doi\":\"arxiv-2408.03408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hardware accelerators, in particular accelerators for tensor processing, have\\nmany potential application domains. However, they currently lack the software\\ninfrastructure to support the majority of domains outside of deep learning.\\nFurthermore, a compiler that can easily be updated to reflect changes at both\\napplication and hardware levels would enable more agile development and design\\nspace exploration of accelerators, allowing hardware designers to realize\\ncloser-to-optimal performance. In this work, we discuss how large language\\nmodels (LLMs) could be leveraged to build such a compiler. Specifically, we\\ndemonstrate the ability of GPT-4 to achieve high pass rates in translating code\\nto the Gemmini accelerator, and prototype a technique for decomposing\\ntranslation into smaller, more LLM-friendly steps. Additionally, we propose a\\n2-phase workflow for utilizing LLMs to generate hardware-optimized code.\",\"PeriodicalId\":501197,\"journal\":{\"name\":\"arXiv - CS - Programming Languages\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

硬件加速器,特别是用于张量处理的加速器,有许多潜在的应用领域。此外,一个可以轻松更新以反映应用和硬件层面变化的编译器,将使加速器的开发和设计空间探索更加灵活,从而让硬件设计人员实现更接近最优的性能。在这项工作中,我们讨论了如何利用大型语言模型(LLM)来构建这样的编译器。具体来说,我们演示了 GPT-4 在将代码翻译到 Gemmini 加速器时实现高通过率的能力,并展示了一种将翻译分解为更小、对 LLM 更友好的步骤的技术原型。此外,我们还提出了利用 LLM 生成硬件优化代码的两阶段工作流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LLM-Aided Compilation for Tensor Accelerators
Hardware accelerators, in particular accelerators for tensor processing, have many potential application domains. However, they currently lack the software infrastructure to support the majority of domains outside of deep learning. Furthermore, a compiler that can easily be updated to reflect changes at both application and hardware levels would enable more agile development and design space exploration of accelerators, allowing hardware designers to realize closer-to-optimal performance. In this work, we discuss how large language models (LLMs) could be leveraged to build such a compiler. Specifically, we demonstrate the ability of GPT-4 to achieve high pass rates in translating code to the Gemmini accelerator, and prototype a technique for decomposing translation into smaller, more LLM-friendly steps. Additionally, we propose a 2-phase workflow for utilizing LLMs to generate hardware-optimized code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Memory Consistency and Program Transformations No Saved Kaleidosope: an 100% Jitted Neural Network Coding Language with Pythonic Syntax Towards Quantum Multiparty Session Types The Incredible Shrinking Context... in a decompiler near you Scheme Pearl: Quantum Continuations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1