Revati R. Nagarkar, Rucha R. Purandare, Mohini S. Gupte, Madhuri S. Kulkarni
{"title":"用于无溶剂室温克诺文纳格尔缩合反应的绿色异相镍铬氧化物催化剂","authors":"Revati R. Nagarkar, Rucha R. Purandare, Mohini S. Gupte, Madhuri S. Kulkarni","doi":"10.1007/s12039-024-02292-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper discusses synthesizing green, recyclable, heterogeneous nickel–chromium oxide (NiCr<sub>2</sub>O<sub>4</sub>) catalyst and its application in solvent-free, room-temperature Knoevenagel condensation reaction. Nickel–chromium oxides (Ni–Cr oxides) were prepared using the coprecipitation method in various proportions, such as 2:1, 1:1, and 1:2 ratios. The synthesized catalysts were characterized using X-ray diffraction, SEM-EDX, and BET-surface area analysis. The synthesized catalysts were employed as heterogeneous catalysts in the Knoevenagel condensation model reaction of 4-chlorobenzaldehyde and malononitrile under room temperature, solvent-free grinding reaction conditions, and the results were compared. This paper will discuss the most suitable catalyst and its possible mechanism.</p></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 3","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green heterogeneous nickel–chromium oxide catalyst for solvent-free, room-temperature Knoevenagel condensation reaction\",\"authors\":\"Revati R. Nagarkar, Rucha R. Purandare, Mohini S. Gupte, Madhuri S. Kulkarni\",\"doi\":\"10.1007/s12039-024-02292-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper discusses synthesizing green, recyclable, heterogeneous nickel–chromium oxide (NiCr<sub>2</sub>O<sub>4</sub>) catalyst and its application in solvent-free, room-temperature Knoevenagel condensation reaction. Nickel–chromium oxides (Ni–Cr oxides) were prepared using the coprecipitation method in various proportions, such as 2:1, 1:1, and 1:2 ratios. The synthesized catalysts were characterized using X-ray diffraction, SEM-EDX, and BET-surface area analysis. The synthesized catalysts were employed as heterogeneous catalysts in the Knoevenagel condensation model reaction of 4-chlorobenzaldehyde and malononitrile under room temperature, solvent-free grinding reaction conditions, and the results were compared. This paper will discuss the most suitable catalyst and its possible mechanism.</p></div>\",\"PeriodicalId\":616,\"journal\":{\"name\":\"Journal of Chemical Sciences\",\"volume\":\"136 3\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Sciences\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12039-024-02292-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12039-024-02292-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本文讨论了绿色、可回收的异相镍铬氧化物(NiCr2O4)催化剂的合成及其在无溶剂室温克诺文纳格尔缩合反应中的应用。采用共沉淀法制备了不同比例的镍铬氧化物(Ni-Cr 氧化物),如 2:1、1:1 和 1:2。利用 X 射线衍射、SEM-EDX 和 BET 表面积分析对合成的催化剂进行了表征。在室温、无溶剂研磨反应条件下,将合成的催化剂作为异相催化剂用于 4-氯苯甲醛和丙二腈的 Knoevenagel 缩合模型反应,并对结果进行了比较。本文将讨论最合适的催化剂及其可能的机理。
Green heterogeneous nickel–chromium oxide catalyst for solvent-free, room-temperature Knoevenagel condensation reaction
This paper discusses synthesizing green, recyclable, heterogeneous nickel–chromium oxide (NiCr2O4) catalyst and its application in solvent-free, room-temperature Knoevenagel condensation reaction. Nickel–chromium oxides (Ni–Cr oxides) were prepared using the coprecipitation method in various proportions, such as 2:1, 1:1, and 1:2 ratios. The synthesized catalysts were characterized using X-ray diffraction, SEM-EDX, and BET-surface area analysis. The synthesized catalysts were employed as heterogeneous catalysts in the Knoevenagel condensation model reaction of 4-chlorobenzaldehyde and malononitrile under room temperature, solvent-free grinding reaction conditions, and the results were compared. This paper will discuss the most suitable catalyst and its possible mechanism.
期刊介绍:
Journal of Chemical Sciences is a monthly journal published by the Indian Academy of Sciences. It formed part of the original Proceedings of the Indian Academy of Sciences – Part A, started by the Nobel Laureate Prof C V Raman in 1934, that was split in 1978 into three separate journals. It was renamed as Journal of Chemical Sciences in 2004. The journal publishes original research articles and rapid communications, covering all areas of chemical sciences. A significant feature of the journal is its special issues, brought out from time to time, devoted to conference symposia/proceedings in frontier areas of the subject, held not only in India but also in other countries.