Amine Kassimi , Jamal Riffi , Khalid El Fazazy , Thierry Bertin Gardelle , Hamza Mouncif , Mohamed Adnane Mahraz , Ali Yahyaouy , Hamid Tairi
{"title":"一维 CNN 和基于人脸的随机行走:增强网格理解和三维语义分割的强大组合","authors":"Amine Kassimi , Jamal Riffi , Khalid El Fazazy , Thierry Bertin Gardelle , Hamza Mouncif , Mohamed Adnane Mahraz , Ali Yahyaouy , Hamid Tairi","doi":"10.1016/j.cagd.2024.102379","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present a novel face-based random walk method aimed at addressing the 3D semantic segmentation issue. Our method utilizes a one-dimensional convolutional neural network for detailed feature extraction from sequences of triangular faces and employs a stacked gated recurrent unit to gather information along the sequence during training. This approach allows us to effectively handle irregular meshes and utilize the inherent feature extraction potential present in mesh geometry. Our study's results show that the proposed method achieves competitive results compared to the state-of-the-art methods in mesh segmentation. Importantly, it requires fewer training iterations and demonstrates versatility by applying to a wide range of objects without the need for the mesh to adhere to manifold or watertight topology requirements.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"113 ","pages":"Article 102379"},"PeriodicalIF":1.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"1D CNNs and face-based random walks: A powerful combination to enhance mesh understanding and 3D semantic segmentation\",\"authors\":\"Amine Kassimi , Jamal Riffi , Khalid El Fazazy , Thierry Bertin Gardelle , Hamza Mouncif , Mohamed Adnane Mahraz , Ali Yahyaouy , Hamid Tairi\",\"doi\":\"10.1016/j.cagd.2024.102379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we present a novel face-based random walk method aimed at addressing the 3D semantic segmentation issue. Our method utilizes a one-dimensional convolutional neural network for detailed feature extraction from sequences of triangular faces and employs a stacked gated recurrent unit to gather information along the sequence during training. This approach allows us to effectively handle irregular meshes and utilize the inherent feature extraction potential present in mesh geometry. Our study's results show that the proposed method achieves competitive results compared to the state-of-the-art methods in mesh segmentation. Importantly, it requires fewer training iterations and demonstrates versatility by applying to a wide range of objects without the need for the mesh to adhere to manifold or watertight topology requirements.</p></div>\",\"PeriodicalId\":55226,\"journal\":{\"name\":\"Computer Aided Geometric Design\",\"volume\":\"113 \",\"pages\":\"Article 102379\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Aided Geometric Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167839624001134\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839624001134","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
1D CNNs and face-based random walks: A powerful combination to enhance mesh understanding and 3D semantic segmentation
In this paper, we present a novel face-based random walk method aimed at addressing the 3D semantic segmentation issue. Our method utilizes a one-dimensional convolutional neural network for detailed feature extraction from sequences of triangular faces and employs a stacked gated recurrent unit to gather information along the sequence during training. This approach allows us to effectively handle irregular meshes and utilize the inherent feature extraction potential present in mesh geometry. Our study's results show that the proposed method achieves competitive results compared to the state-of-the-art methods in mesh segmentation. Importantly, it requires fewer training iterations and demonstrates versatility by applying to a wide range of objects without the need for the mesh to adhere to manifold or watertight topology requirements.
期刊介绍:
The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following:
-Mathematical and Geometric Foundations-
Curve, Surface, and Volume generation-
CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision-
Industrial, medical, and scientific applications.
The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.