固定二氧化碳的火绒菌膜的生物生成、工程和功能

Jessica H Hennacy, Nicky Atkinson, Angelo Kayser-Browne, Sabrina L Ergun, Eric Franklin, Lianyong Wang, Moshe Kafri, Friedrich Fauser, Josep Vilarrasa-Blasi, Robert E Jinkerson, Alistair J McCormick, Martin C Jonikas
{"title":"固定二氧化碳的火绒菌膜的生物生成、工程和功能","authors":"Jessica H Hennacy, Nicky Atkinson, Angelo Kayser-Browne, Sabrina L Ergun, Eric Franklin, Lianyong Wang, Moshe Kafri, Friedrich Fauser, Josep Vilarrasa-Blasi, Robert E Jinkerson, Alistair J McCormick, Martin C Jonikas","doi":"10.1101/2024.08.08.603944","DOIUrl":null,"url":null,"abstract":"Approximately one-third of global CO2 assimilation is performed by the pyrenoid, a liquid-like organelle found in most algae and some plants. Specialized membranes are hypothesized to drive CO2 assimilation in the pyrenoid by delivering concentrated CO2, but their biogenesis and function have not been experimentally characterized. Here, we show that homologous proteins SAGA1 and MITH1 mediate the biogenesis of the pyrenoid membrane tubules in the model alga Chlamydomonas reinhardtii and are sufficient to reconstitute pyrenoid-traversing membranes in a heterologous system, the plant Arabidopsis thaliana. SAGA1 localizes to the regions where thylakoid membranes transition into tubules and is necessary to initiate tubule formation. MITH1 localizes to the tubules and is necessary for their extension through the pyrenoid. Tubule-deficient mutants exhibit growth defects under CO2-limiting conditions, providing evidence for the function of membrane tubules in CO2 delivery to the pyrenoid. Furthermore, these mutants form multiple aberrant condensates of pyrenoid matrix, indicating that a normal tubule network promotes the coalescence of a single pyrenoid. The reconstitution of pyrenoid-traversing membranes in a plant represents a key milestone toward engineering a functional pyrenoid into crops for improving crop yields. More broadly, our study demonstrates the functional importance of pyrenoid membranes, identifies key biogenesis factors, and paves the way for the molecular characterization of pyrenoid membranes across the tree of life.","PeriodicalId":501108,"journal":{"name":"bioRxiv - Molecular Biology","volume":"99 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biogenesis, engineering and function of membranes in the CO2-fixing pyrenoid\",\"authors\":\"Jessica H Hennacy, Nicky Atkinson, Angelo Kayser-Browne, Sabrina L Ergun, Eric Franklin, Lianyong Wang, Moshe Kafri, Friedrich Fauser, Josep Vilarrasa-Blasi, Robert E Jinkerson, Alistair J McCormick, Martin C Jonikas\",\"doi\":\"10.1101/2024.08.08.603944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximately one-third of global CO2 assimilation is performed by the pyrenoid, a liquid-like organelle found in most algae and some plants. Specialized membranes are hypothesized to drive CO2 assimilation in the pyrenoid by delivering concentrated CO2, but their biogenesis and function have not been experimentally characterized. Here, we show that homologous proteins SAGA1 and MITH1 mediate the biogenesis of the pyrenoid membrane tubules in the model alga Chlamydomonas reinhardtii and are sufficient to reconstitute pyrenoid-traversing membranes in a heterologous system, the plant Arabidopsis thaliana. SAGA1 localizes to the regions where thylakoid membranes transition into tubules and is necessary to initiate tubule formation. MITH1 localizes to the tubules and is necessary for their extension through the pyrenoid. Tubule-deficient mutants exhibit growth defects under CO2-limiting conditions, providing evidence for the function of membrane tubules in CO2 delivery to the pyrenoid. Furthermore, these mutants form multiple aberrant condensates of pyrenoid matrix, indicating that a normal tubule network promotes the coalescence of a single pyrenoid. The reconstitution of pyrenoid-traversing membranes in a plant represents a key milestone toward engineering a functional pyrenoid into crops for improving crop yields. More broadly, our study demonstrates the functional importance of pyrenoid membranes, identifies key biogenesis factors, and paves the way for the molecular characterization of pyrenoid membranes across the tree of life.\",\"PeriodicalId\":501108,\"journal\":{\"name\":\"bioRxiv - Molecular Biology\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.08.603944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.08.603944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全球大约三分之一的二氧化碳同化作用是由类火绒体完成的,类火绒体是一种液态细胞器,存在于大多数藻类和一些植物中。据推测,专门的膜可通过输送高浓度的二氧化碳来驱动类肾盂中的二氧化碳同化作用,但它们的生物发生和功能尚未得到实验表征。在这里,我们发现同源蛋白 SAGA1 和 MITH1 在模式藻类莱茵衣藻中介导了肾小管膜的生物发生,并且足以在异源系统(拟南芥)中重建肾小管穿越膜。SAGA1 定位于类硫基膜过渡到小管的区域,是启动小管形成所必需的。MITH1 定位于小管,是小管穿过焦磷酸延伸的必要条件。小管缺失突变体在二氧化碳限制条件下表现出生长缺陷,为膜小管向类肾盂输送二氧化碳的功能提供了证据。此外,这些突变体形成了多个异常的类肾蕊基质凝聚体,表明正常的膜管网络可促进单个类肾蕊的凝聚。在植物中重建类肾炎素穿越膜是将功能性类肾炎素工程化以提高作物产量的一个重要里程碑。从更广泛的意义上讲,我们的研究证明了类肾炎素膜功能的重要性,确定了关键的生物发生因子,并为类肾炎素膜在整个生命树中的分子特征描述铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biogenesis, engineering and function of membranes in the CO2-fixing pyrenoid
Approximately one-third of global CO2 assimilation is performed by the pyrenoid, a liquid-like organelle found in most algae and some plants. Specialized membranes are hypothesized to drive CO2 assimilation in the pyrenoid by delivering concentrated CO2, but their biogenesis and function have not been experimentally characterized. Here, we show that homologous proteins SAGA1 and MITH1 mediate the biogenesis of the pyrenoid membrane tubules in the model alga Chlamydomonas reinhardtii and are sufficient to reconstitute pyrenoid-traversing membranes in a heterologous system, the plant Arabidopsis thaliana. SAGA1 localizes to the regions where thylakoid membranes transition into tubules and is necessary to initiate tubule formation. MITH1 localizes to the tubules and is necessary for their extension through the pyrenoid. Tubule-deficient mutants exhibit growth defects under CO2-limiting conditions, providing evidence for the function of membrane tubules in CO2 delivery to the pyrenoid. Furthermore, these mutants form multiple aberrant condensates of pyrenoid matrix, indicating that a normal tubule network promotes the coalescence of a single pyrenoid. The reconstitution of pyrenoid-traversing membranes in a plant represents a key milestone toward engineering a functional pyrenoid into crops for improving crop yields. More broadly, our study demonstrates the functional importance of pyrenoid membranes, identifies key biogenesis factors, and paves the way for the molecular characterization of pyrenoid membranes across the tree of life.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transcriptomic landscape of sex differences in obesity and type 2 diabetes in subcutaneous adipose tissue U2AF regulates the translation and localization of nuclear-encoded mitochondrial mRNAs Core splicing architecture and early spliceosomal recognition determine microexon sensitivity to SRRM3/4 CRISPR/Cas9-induced breaks are insufficient to break linkage drag surrounding the ToMV locus of Solanum lycopersicum Medin Induces Pro-Inflammatory Activation of Human Brain Vascular Smooth Muscle Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1