了解分类中的预测差异

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Learning Pub Date : 2024-08-07 DOI:10.1007/s10994-024-06557-4
Xavier Renard, Thibault Laugel, Marcin Detyniecki
{"title":"了解分类中的预测差异","authors":"Xavier Renard, Thibault Laugel, Marcin Detyniecki","doi":"10.1007/s10994-024-06557-4","DOIUrl":null,"url":null,"abstract":"<p>A multitude of classifiers can be trained on the same data to achieve similar performances during test time while having learned significantly different classification patterns. When selecting a classifier, the machine learning practitioner has no understanding on the differences between models, their limits, where they agree and where they don’t. But this choice will result in concrete consequences for instances to be classified in the discrepancy zone, since the final decision will be based on the selected classification pattern. Besides the arbitrary nature of the result, a bad choice could have further negative consequences such as loss of opportunity or lack of fairness. This paper proposes to address this question by analyzing the prediction discrepancies in a pool of best-performing models trained on the same data. A model-agnostic algorithm, DIG, is proposed to <i>capture and explain</i> discrepancies locally in tabular datasets, to enable the practitioner to make the best educated decision when selecting a model by anticipating its potential undesired consequences.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding prediction discrepancies in classification\",\"authors\":\"Xavier Renard, Thibault Laugel, Marcin Detyniecki\",\"doi\":\"10.1007/s10994-024-06557-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A multitude of classifiers can be trained on the same data to achieve similar performances during test time while having learned significantly different classification patterns. When selecting a classifier, the machine learning practitioner has no understanding on the differences between models, their limits, where they agree and where they don’t. But this choice will result in concrete consequences for instances to be classified in the discrepancy zone, since the final decision will be based on the selected classification pattern. Besides the arbitrary nature of the result, a bad choice could have further negative consequences such as loss of opportunity or lack of fairness. This paper proposes to address this question by analyzing the prediction discrepancies in a pool of best-performing models trained on the same data. A model-agnostic algorithm, DIG, is proposed to <i>capture and explain</i> discrepancies locally in tabular datasets, to enable the practitioner to make the best educated decision when selecting a model by anticipating its potential undesired consequences.</p>\",\"PeriodicalId\":49900,\"journal\":{\"name\":\"Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10994-024-06557-4\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-024-06557-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在相同的数据上训练多种分类器,在测试期间可以获得相似的性能,但学习到的分类模式却大相径庭。在选择分类器时,机器学习从业者并不了解模型之间的差异、它们的局限性、它们在哪些方面一致,哪些方面不一致。但这种选择会给差异区内的实例分类带来具体后果,因为最终决定将基于所选的分类模式。除了结果的任意性之外,错误的选择还可能带来更多负面影响,如丧失机会或缺乏公平性。本文建议通过分析在相同数据上训练出来的最佳模型库中的预测差异来解决这个问题。本文提出了一种与模型无关的算法--DIG,用于捕捉和解释表格数据集中的局部差异,从而使实践者在选择模型时,通过预测其潜在的不良后果,做出最明智的决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding prediction discrepancies in classification

A multitude of classifiers can be trained on the same data to achieve similar performances during test time while having learned significantly different classification patterns. When selecting a classifier, the machine learning practitioner has no understanding on the differences between models, their limits, where they agree and where they don’t. But this choice will result in concrete consequences for instances to be classified in the discrepancy zone, since the final decision will be based on the selected classification pattern. Besides the arbitrary nature of the result, a bad choice could have further negative consequences such as loss of opportunity or lack of fairness. This paper proposes to address this question by analyzing the prediction discrepancies in a pool of best-performing models trained on the same data. A model-agnostic algorithm, DIG, is proposed to capture and explain discrepancies locally in tabular datasets, to enable the practitioner to make the best educated decision when selecting a model by anticipating its potential undesired consequences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Learning
Machine Learning 工程技术-计算机:人工智能
CiteScore
11.00
自引率
2.70%
发文量
162
审稿时长
3 months
期刊介绍: Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.
期刊最新文献
On metafeatures’ ability of implicit concept identification Persistent Laplacian-enhanced algorithm for scarcely labeled data classification Towards a foundation large events model for soccer Conformal prediction for regression models with asymmetrically distributed errors: application to aircraft navigation during landing maneuver In-game soccer outcome prediction with offline reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1