用于突出物体检测的多尺度和细节增强分段任何模型

Shixuan Gao, Pingping Zhang, Tianyu Yan, Huchuan Lu
{"title":"用于突出物体检测的多尺度和细节增强分段任何模型","authors":"Shixuan Gao, Pingping Zhang, Tianyu Yan, Huchuan Lu","doi":"arxiv-2408.04326","DOIUrl":null,"url":null,"abstract":"Salient Object Detection (SOD) aims to identify and segment the most\nprominent objects in images. Advanced SOD methods often utilize various\nConvolutional Neural Networks (CNN) or Transformers for deep feature\nextraction. However, these methods still deliver low performance and poor\ngeneralization in complex cases. Recently, Segment Anything Model (SAM) has\nbeen proposed as a visual fundamental model, which gives strong segmentation\nand generalization capabilities. Nonetheless, SAM requires accurate prompts of\ntarget objects, which are unavailable in SOD. Additionally, SAM lacks the\nutilization of multi-scale and multi-level information, as well as the\nincorporation of fine-grained details. To address these shortcomings, we\npropose a Multi-scale and Detail-enhanced SAM (MDSAM) for SOD. Specifically, we\nfirst introduce a Lightweight Multi-Scale Adapter (LMSA), which allows SAM to\nlearn multi-scale information with very few trainable parameters. Then, we\npropose a Multi-Level Fusion Module (MLFM) to comprehensively utilize the\nmulti-level information from the SAM's encoder. Finally, we propose a Detail\nEnhancement Module (DEM) to incorporate SAM with fine-grained details.\nExperimental results demonstrate the superior performance of our model on\nmultiple SOD datasets and its strong generalization on other segmentation\ntasks. The source code is released at https://github.com/BellyBeauty/MDSAM.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Scale and Detail-Enhanced Segment Anything Model for Salient Object Detection\",\"authors\":\"Shixuan Gao, Pingping Zhang, Tianyu Yan, Huchuan Lu\",\"doi\":\"arxiv-2408.04326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Salient Object Detection (SOD) aims to identify and segment the most\\nprominent objects in images. Advanced SOD methods often utilize various\\nConvolutional Neural Networks (CNN) or Transformers for deep feature\\nextraction. However, these methods still deliver low performance and poor\\ngeneralization in complex cases. Recently, Segment Anything Model (SAM) has\\nbeen proposed as a visual fundamental model, which gives strong segmentation\\nand generalization capabilities. Nonetheless, SAM requires accurate prompts of\\ntarget objects, which are unavailable in SOD. Additionally, SAM lacks the\\nutilization of multi-scale and multi-level information, as well as the\\nincorporation of fine-grained details. To address these shortcomings, we\\npropose a Multi-scale and Detail-enhanced SAM (MDSAM) for SOD. Specifically, we\\nfirst introduce a Lightweight Multi-Scale Adapter (LMSA), which allows SAM to\\nlearn multi-scale information with very few trainable parameters. Then, we\\npropose a Multi-Level Fusion Module (MLFM) to comprehensively utilize the\\nmulti-level information from the SAM's encoder. Finally, we propose a Detail\\nEnhancement Module (DEM) to incorporate SAM with fine-grained details.\\nExperimental results demonstrate the superior performance of our model on\\nmultiple SOD datasets and its strong generalization on other segmentation\\ntasks. The source code is released at https://github.com/BellyBeauty/MDSAM.\",\"PeriodicalId\":501480,\"journal\":{\"name\":\"arXiv - CS - Multimedia\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

突出物体检测(SOD)旨在识别和分割图像中最突出的物体。先进的 SOD 方法通常利用各种卷积神经网络(CNN)或变换器进行深度特征提取。然而,这些方法在复杂情况下的性能仍然较低,泛化能力较差。最近,有人提出了一种视觉基本模型--"任意分割模型"(Segment Anything Model,SAM),它具有很强的分割和泛化能力。然而,SAM 需要目标对象的准确提示,而 SOD 却无法做到这一点。此外,SAM 缺乏对多尺度和多层次信息的利用,也没有纳入细粒度细节。为了解决这些不足,我们提出了一种适用于 SOD 的多尺度和细节增强型 SAM(MDSAM)。具体来说,我们首先引入了轻量级多尺度适配器(LMSA),该适配器允许 SAM 以极少的可训练参数学习多尺度信息。然后,我们提出了多级融合模块(MLFM),以全面利用 SAM 编码器的多级信息。实验结果表明,我们的模型在多个 SOD 数据集上表现出色,在其他分割任务上也有很强的通用性。源代码发布于 https://github.com/BellyBeauty/MDSAM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Scale and Detail-Enhanced Segment Anything Model for Salient Object Detection
Salient Object Detection (SOD) aims to identify and segment the most prominent objects in images. Advanced SOD methods often utilize various Convolutional Neural Networks (CNN) or Transformers for deep feature extraction. However, these methods still deliver low performance and poor generalization in complex cases. Recently, Segment Anything Model (SAM) has been proposed as a visual fundamental model, which gives strong segmentation and generalization capabilities. Nonetheless, SAM requires accurate prompts of target objects, which are unavailable in SOD. Additionally, SAM lacks the utilization of multi-scale and multi-level information, as well as the incorporation of fine-grained details. To address these shortcomings, we propose a Multi-scale and Detail-enhanced SAM (MDSAM) for SOD. Specifically, we first introduce a Lightweight Multi-Scale Adapter (LMSA), which allows SAM to learn multi-scale information with very few trainable parameters. Then, we propose a Multi-Level Fusion Module (MLFM) to comprehensively utilize the multi-level information from the SAM's encoder. Finally, we propose a Detail Enhancement Module (DEM) to incorporate SAM with fine-grained details. Experimental results demonstrate the superior performance of our model on multiple SOD datasets and its strong generalization on other segmentation tasks. The source code is released at https://github.com/BellyBeauty/MDSAM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vista3D: Unravel the 3D Darkside of a Single Image MoRAG -- Multi-Fusion Retrieval Augmented Generation for Human Motion Efficient Low-Resolution Face Recognition via Bridge Distillation Enhancing Few-Shot Classification without Forgetting through Multi-Level Contrastive Constraints NVLM: Open Frontier-Class Multimodal LLMs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1