HiQuE:用于多模态抑郁检测的分层问题嵌入网络

Juho Jung, Chaewon Kang, Jeewoo Yoon, Seungbae Kim, Jinyoung Han
{"title":"HiQuE:用于多模态抑郁检测的分层问题嵌入网络","authors":"Juho Jung, Chaewon Kang, Jeewoo Yoon, Seungbae Kim, Jinyoung Han","doi":"arxiv-2408.03648","DOIUrl":null,"url":null,"abstract":"The utilization of automated depression detection significantly enhances\nearly intervention for individuals experiencing depression. Despite numerous\nproposals on automated depression detection using recorded clinical interview\nvideos, limited attention has been paid to considering the hierarchical\nstructure of the interview questions. In clinical interviews for diagnosing\ndepression, clinicians use a structured questionnaire that includes routine\nbaseline questions and follow-up questions to assess the interviewee's\ncondition. This paper introduces HiQuE (Hierarchical Question Embedding\nnetwork), a novel depression detection framework that leverages the\nhierarchical relationship between primary and follow-up questions in clinical\ninterviews. HiQuE can effectively capture the importance of each question in\ndiagnosing depression by learning mutual information across multiple\nmodalities. We conduct extensive experiments on the widely-used clinical\ninterview data, DAIC-WOZ, where our model outperforms other state-of-the-art\nmultimodal depression detection models and emotion recognition models,\nshowcasing its clinical utility in depression detection.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"372 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HiQuE: Hierarchical Question Embedding Network for Multimodal Depression Detection\",\"authors\":\"Juho Jung, Chaewon Kang, Jeewoo Yoon, Seungbae Kim, Jinyoung Han\",\"doi\":\"arxiv-2408.03648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The utilization of automated depression detection significantly enhances\\nearly intervention for individuals experiencing depression. Despite numerous\\nproposals on automated depression detection using recorded clinical interview\\nvideos, limited attention has been paid to considering the hierarchical\\nstructure of the interview questions. In clinical interviews for diagnosing\\ndepression, clinicians use a structured questionnaire that includes routine\\nbaseline questions and follow-up questions to assess the interviewee's\\ncondition. This paper introduces HiQuE (Hierarchical Question Embedding\\nnetwork), a novel depression detection framework that leverages the\\nhierarchical relationship between primary and follow-up questions in clinical\\ninterviews. HiQuE can effectively capture the importance of each question in\\ndiagnosing depression by learning mutual information across multiple\\nmodalities. We conduct extensive experiments on the widely-used clinical\\ninterview data, DAIC-WOZ, where our model outperforms other state-of-the-art\\nmultimodal depression detection models and emotion recognition models,\\nshowcasing its clinical utility in depression detection.\",\"PeriodicalId\":501480,\"journal\":{\"name\":\"arXiv - CS - Multimedia\",\"volume\":\"372 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用自动抑郁检测可大大加强对抑郁症患者的早期干预。尽管有很多关于使用临床访谈录像自动检测抑郁的建议,但对访谈问题的层次结构的关注却很有限。在诊断抑郁症的临床访谈中,临床医生会使用结构化问卷,其中包括常规基线问题和后续问题,以评估受访者的状况。本文介绍的 HiQuE(层次问题嵌入网络)是一种新型抑郁检测框架,它利用了临床访谈中基线问题和随访问题之间的层次关系。HiQuE 可以通过学习多模态间的相互信息,有效捕捉每个问题对诊断抑郁症的重要性。我们在广泛使用的临床访谈数据 DAIC-WOZ 上进行了大量实验,结果表明我们的模型优于其他最先进的多模态抑郁检测模型和情绪识别模型,展示了它在抑郁检测方面的临床实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HiQuE: Hierarchical Question Embedding Network for Multimodal Depression Detection
The utilization of automated depression detection significantly enhances early intervention for individuals experiencing depression. Despite numerous proposals on automated depression detection using recorded clinical interview videos, limited attention has been paid to considering the hierarchical structure of the interview questions. In clinical interviews for diagnosing depression, clinicians use a structured questionnaire that includes routine baseline questions and follow-up questions to assess the interviewee's condition. This paper introduces HiQuE (Hierarchical Question Embedding network), a novel depression detection framework that leverages the hierarchical relationship between primary and follow-up questions in clinical interviews. HiQuE can effectively capture the importance of each question in diagnosing depression by learning mutual information across multiple modalities. We conduct extensive experiments on the widely-used clinical interview data, DAIC-WOZ, where our model outperforms other state-of-the-art multimodal depression detection models and emotion recognition models, showcasing its clinical utility in depression detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vista3D: Unravel the 3D Darkside of a Single Image MoRAG -- Multi-Fusion Retrieval Augmented Generation for Human Motion Efficient Low-Resolution Face Recognition via Bridge Distillation Enhancing Few-Shot Classification without Forgetting through Multi-Level Contrastive Constraints NVLM: Open Frontier-Class Multimodal LLMs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1