利用三维卷积神经网络识别晶体结构,并将其应用于二氧化硅的高压相变

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Modelling and Simulation in Materials Science and Engineering Pub Date : 2024-08-04 DOI:10.1088/1361-651x/ad64f3
Linus C Erhard, Daniel Utt, Arne J Klomp and Karsten Albe
{"title":"利用三维卷积神经网络识别晶体结构,并将其应用于二氧化硅的高压相变","authors":"Linus C Erhard, Daniel Utt, Arne J Klomp and Karsten Albe","doi":"10.1088/1361-651x/ad64f3","DOIUrl":null,"url":null,"abstract":"Efficient, reliable and easy-to-use structure recognition of atomic environments is essential for the analysis of atomic scale computer simulations. In this work, we train two neuronal network (NN) architectures, namely PointNet and dynamic graph convolutional NN (DG-CNN) using different hyperparameters and training regimes to assess their performance in structure identification tasks of atomistic structure data. We show benchmarks on simple crystal structures, where we can compare against established methods. The approach is subsequently extended to structurally more complex SiO2 phases. By making use of this structure recognition tool, we are able to achieve a deeper understanding of the crystallization process in amorphous SiO2 under shock compression. Lastly, we show how the NN based structure identification workflows can be integrated into OVITO using its python interface.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"14 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal structure identification with 3D convolutional neural networks with application to high-pressure phase transitions in SiO2\",\"authors\":\"Linus C Erhard, Daniel Utt, Arne J Klomp and Karsten Albe\",\"doi\":\"10.1088/1361-651x/ad64f3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient, reliable and easy-to-use structure recognition of atomic environments is essential for the analysis of atomic scale computer simulations. In this work, we train two neuronal network (NN) architectures, namely PointNet and dynamic graph convolutional NN (DG-CNN) using different hyperparameters and training regimes to assess their performance in structure identification tasks of atomistic structure data. We show benchmarks on simple crystal structures, where we can compare against established methods. The approach is subsequently extended to structurally more complex SiO2 phases. By making use of this structure recognition tool, we are able to achieve a deeper understanding of the crystallization process in amorphous SiO2 under shock compression. Lastly, we show how the NN based structure identification workflows can be integrated into OVITO using its python interface.\",\"PeriodicalId\":18648,\"journal\":{\"name\":\"Modelling and Simulation in Materials Science and Engineering\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-651x/ad64f3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad64f3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高效、可靠且易于使用的原子环境结构识别对于原子尺度计算机模拟分析至关重要。在这项工作中,我们使用不同的超参数和训练机制训练两种神经元网络(NN)架构,即 PointNet 和动态图卷积 NN(DG-CNN),以评估它们在原子结构数据的结构识别任务中的性能。我们展示了简单晶体结构的基准测试,并与已有方法进行了比较。随后,我们将该方法扩展到结构更为复杂的 SiO2 相。利用这种结构识别工具,我们能够更深入地了解冲击压缩下非晶态二氧化硅的结晶过程。最后,我们展示了如何利用 Python 界面将基于 NN 的结构识别工作流程集成到 OVITO 中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crystal structure identification with 3D convolutional neural networks with application to high-pressure phase transitions in SiO2
Efficient, reliable and easy-to-use structure recognition of atomic environments is essential for the analysis of atomic scale computer simulations. In this work, we train two neuronal network (NN) architectures, namely PointNet and dynamic graph convolutional NN (DG-CNN) using different hyperparameters and training regimes to assess their performance in structure identification tasks of atomistic structure data. We show benchmarks on simple crystal structures, where we can compare against established methods. The approach is subsequently extended to structurally more complex SiO2 phases. By making use of this structure recognition tool, we are able to achieve a deeper understanding of the crystallization process in amorphous SiO2 under shock compression. Lastly, we show how the NN based structure identification workflows can be integrated into OVITO using its python interface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
96
审稿时长
1.7 months
期刊介绍: Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation. Subject coverage: Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.
期刊最新文献
Plastic deformation mechanism of γ phase Fe–Cr alloy revealed by molecular dynamics simulations A nonlinear phase-field model of corrosion with charging kinetics of electric double layer Effect of helium bubbles on the mobility of edge dislocations in copper Mechanical-electric-magnetic-thermal coupled enriched finite element method for magneto-electro-elastic structures Molecular dynamics simulations of high-energy radiation damage in hcp-titanium considering electronic effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1