评估人工神经网络中用于估算缺失的日降水量的输入变量选择方法

Mehran Ghodrati, Alireza B. Dariane
{"title":"评估人工神经网络中用于估算缺失的日降水量的输入变量选择方法","authors":"Mehran Ghodrati, Alireza B. Dariane","doi":"10.1080/02626667.2024.2387156","DOIUrl":null,"url":null,"abstract":"This study evaluates different Input Variable Selection (IVS) methods for precise daily precipitation estimation using artificial neural network (ANN) models. The effectiveness of the models is mea...","PeriodicalId":13036,"journal":{"name":"Hydrological Sciences Journal","volume":"226 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of input variable selection methods in artificial neural networks for estimating missing daily precipitation\",\"authors\":\"Mehran Ghodrati, Alireza B. Dariane\",\"doi\":\"10.1080/02626667.2024.2387156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study evaluates different Input Variable Selection (IVS) methods for precise daily precipitation estimation using artificial neural network (ANN) models. The effectiveness of the models is mea...\",\"PeriodicalId\":13036,\"journal\":{\"name\":\"Hydrological Sciences Journal\",\"volume\":\"226 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrological Sciences Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02626667.2024.2387156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Sciences Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02626667.2024.2387156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了使用人工神经网络(ANN)模型精确估算日降水量的不同输入变量选择(IVS)方法。这些模型的有效性得到了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of input variable selection methods in artificial neural networks for estimating missing daily precipitation
This study evaluates different Input Variable Selection (IVS) methods for precise daily precipitation estimation using artificial neural network (ANN) models. The effectiveness of the models is mea...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development and evaluation of hydraulic geometry relationships for large Brazilian river basins Pollution-source fractionation and quantification-based assessment of surface water quality in Saigon River, Vietnam: implications for sustainable management strategies Hybrid nonlinear probabilistic model using Monte Carlo simulation and hybrid support vector regression for evaporation predictions Scouring and bed morphology dynamics in a sharp bend with collared pier under unsteady flow Streamflow timing and magnitude during snow drought depend on snow drought type and regional hydroclimate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1