电阻抗断层扫描头部成像的贝叶斯实验设计

IF 1.9 4区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Applied Mathematics Pub Date : 2024-08-05 DOI:10.1137/23m1624634
N. Hyvönen, A. Jääskeläinen, R. Maity, A. Vavilov
{"title":"电阻抗断层扫描头部成像的贝叶斯实验设计","authors":"N. Hyvönen, A. Jääskeläinen, R. Maity, A. Vavilov","doi":"10.1137/23m1624634","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Mathematics, Volume 84, Issue 4, Page 1718-1741, August 2024. <br/> Abstract. This work considers the optimization of electrode positions in head imaging by electrical impedance tomography. The study is motivated by maximizing the sensitivity of electrode measurements to conductivity changes when monitoring the condition of a stroke patient, which justifies adopting a linearized version of the complete electrode model as the forward model. The algorithm is based on finding a (locally) A-optimal measurement configuration via gradient descent with respect to the electrode positions. The efficient computation of the needed derivatives of the complete electrode model is one of the focal points. Two algorithms are introduced and numerically tested on a three-layer head model. The first one assumes a region of interest and a Gaussian prior for the conductivity in the brain, and it can be run offline, i.e., prior to taking any measurements. The second algorithm first computes a reconstruction of the conductivity anomaly caused by the stroke with an initial electrode configuration by combining lagged diffusivity iteration with sequential linearizations, which can be interpreted to produce an approximate Gaussian probability density for the conductivity perturbation. It then resorts to the first algorithm to find new, more informative positions for the available electrodes with the constructed density as the prior.","PeriodicalId":51149,"journal":{"name":"SIAM Journal on Applied Mathematics","volume":"135 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Experimental Design for Head Imaging by Electrical Impedance Tomography\",\"authors\":\"N. Hyvönen, A. Jääskeläinen, R. Maity, A. Vavilov\",\"doi\":\"10.1137/23m1624634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Mathematics, Volume 84, Issue 4, Page 1718-1741, August 2024. <br/> Abstract. This work considers the optimization of electrode positions in head imaging by electrical impedance tomography. The study is motivated by maximizing the sensitivity of electrode measurements to conductivity changes when monitoring the condition of a stroke patient, which justifies adopting a linearized version of the complete electrode model as the forward model. The algorithm is based on finding a (locally) A-optimal measurement configuration via gradient descent with respect to the electrode positions. The efficient computation of the needed derivatives of the complete electrode model is one of the focal points. Two algorithms are introduced and numerically tested on a three-layer head model. The first one assumes a region of interest and a Gaussian prior for the conductivity in the brain, and it can be run offline, i.e., prior to taking any measurements. The second algorithm first computes a reconstruction of the conductivity anomaly caused by the stroke with an initial electrode configuration by combining lagged diffusivity iteration with sequential linearizations, which can be interpreted to produce an approximate Gaussian probability density for the conductivity perturbation. It then resorts to the first algorithm to find new, more informative positions for the available electrodes with the constructed density as the prior.\",\"PeriodicalId\":51149,\"journal\":{\"name\":\"SIAM Journal on Applied Mathematics\",\"volume\":\"135 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1624634\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1624634","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 应用数学杂志》,第 84 卷第 4 期,第 1718-1741 页,2024 年 8 月。 摘要这项研究考虑了电阻抗断层扫描头部成像中电极位置的优化问题。研究的动机是在监测中风患者病情时,最大限度地提高电极测量对电导率变化的灵敏度,这就需要采用完整电极模型的线性化版本作为前向模型。该算法的基础是通过电极位置的梯度下降找到(局部)A 最佳测量配置。高效计算完整电极模型所需的导数是重点之一。本文介绍了两种算法,并对三层头部模型进行了数值测试。第一种算法假定了一个感兴趣区域和大脑电导率的高斯先验值,它可以离线运行,即在进行任何测量之前。第二种算法首先通过将滞后扩散迭代与连续线性化相结合,计算中风造成的传导异常与初始电极配置的重构,可解释为产生近似高斯概率密度的传导扰动。然后,它采用第一种算法,以构建的密度为先验值,为可用电极找到信息量更大的新位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian Experimental Design for Head Imaging by Electrical Impedance Tomography
SIAM Journal on Applied Mathematics, Volume 84, Issue 4, Page 1718-1741, August 2024.
Abstract. This work considers the optimization of electrode positions in head imaging by electrical impedance tomography. The study is motivated by maximizing the sensitivity of electrode measurements to conductivity changes when monitoring the condition of a stroke patient, which justifies adopting a linearized version of the complete electrode model as the forward model. The algorithm is based on finding a (locally) A-optimal measurement configuration via gradient descent with respect to the electrode positions. The efficient computation of the needed derivatives of the complete electrode model is one of the focal points. Two algorithms are introduced and numerically tested on a three-layer head model. The first one assumes a region of interest and a Gaussian prior for the conductivity in the brain, and it can be run offline, i.e., prior to taking any measurements. The second algorithm first computes a reconstruction of the conductivity anomaly caused by the stroke with an initial electrode configuration by combining lagged diffusivity iteration with sequential linearizations, which can be interpreted to produce an approximate Gaussian probability density for the conductivity perturbation. It then resorts to the first algorithm to find new, more informative positions for the available electrodes with the constructed density as the prior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
79
审稿时长
12 months
期刊介绍: SIAM Journal on Applied Mathematics (SIAP) is an interdisciplinary journal containing research articles that treat scientific problems using methods that are of mathematical interest. Appropriate subject areas include the physical, engineering, financial, and life sciences. Examples are problems in fluid mechanics, including reaction-diffusion problems, sedimentation, combustion, and transport theory; solid mechanics; elasticity; electromagnetic theory and optics; materials science; mathematical biology, including population dynamics, biomechanics, and physiology; linear and nonlinear wave propagation, including scattering theory and wave propagation in random media; inverse problems; nonlinear dynamics; and stochastic processes, including queueing theory. Mathematical techniques of interest include asymptotic methods, bifurcation theory, dynamical systems theory, complex network theory, computational methods, and probabilistic and statistical methods.
期刊最新文献
Stable Determination of Time-Dependent Collision Kernel in the Nonlinear Boltzmann Equation The Impact of High-Frequency-Based Stability on the Onset of Action Potentials in Neuron Models Periodic Dynamics of a Reaction-Diffusion-Advection Model with Michaelis–Menten Type Harvesting in Heterogeneous Environments Increasing Stability of the First Order Linearized Inverse Schrödinger Potential Problem with Integer Power Type Nonlinearities A Novel Algebraic Approach to Time-Reversible Evolutionary Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1