通过重定向和位置编码有效检测钢表面的微小缺陷

Chuang Wu, Tingqin He
{"title":"通过重定向和位置编码有效检测钢表面的微小缺陷","authors":"Chuang Wu, Tingqin He","doi":"10.1007/s00371-024-03583-0","DOIUrl":null,"url":null,"abstract":"<p>Impurities and complex manufacturing processes result in many minor, dense steel defects. This situation requires precise defect detection models for effective protection. The single-stage model (based on YOLO) is a popular choice among current models, renowned for its computational efficiency and suitability for real-time online applications. However, existing YOLO-based models often fail to detect small features. To address this issue, we introduce an efficient steel surface defect detection model in YOLOv7, incorporating a feature preservation block (FPB) and location awareness feature pyramid network (LAFPN). The FPB uses shortcut connections that allow the upper layers to access detailed information directly, thus capturing minor defect features more effectively. Furthermore, LAFPN integrates coordinate data during the feature fusion phase, enhancing the detection of minor defects. We introduced a new loss function to identify and locate minor defects accurately. Extensive testing on two public datasets has demonstrated the superior performance of our model compared to five baseline models, achieving an impressive 80.8 mAP on the NEU-DET dataset and 72.6 mAP on the GC10-DET dataset.</p>","PeriodicalId":501186,"journal":{"name":"The Visual Computer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient minor defects detection on steel surface via res-attention and position encoding\",\"authors\":\"Chuang Wu, Tingqin He\",\"doi\":\"10.1007/s00371-024-03583-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Impurities and complex manufacturing processes result in many minor, dense steel defects. This situation requires precise defect detection models for effective protection. The single-stage model (based on YOLO) is a popular choice among current models, renowned for its computational efficiency and suitability for real-time online applications. However, existing YOLO-based models often fail to detect small features. To address this issue, we introduce an efficient steel surface defect detection model in YOLOv7, incorporating a feature preservation block (FPB) and location awareness feature pyramid network (LAFPN). The FPB uses shortcut connections that allow the upper layers to access detailed information directly, thus capturing minor defect features more effectively. Furthermore, LAFPN integrates coordinate data during the feature fusion phase, enhancing the detection of minor defects. We introduced a new loss function to identify and locate minor defects accurately. Extensive testing on two public datasets has demonstrated the superior performance of our model compared to five baseline models, achieving an impressive 80.8 mAP on the NEU-DET dataset and 72.6 mAP on the GC10-DET dataset.</p>\",\"PeriodicalId\":501186,\"journal\":{\"name\":\"The Visual Computer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Visual Computer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00371-024-03583-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Visual Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00371-024-03583-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

杂质和复杂的生产工艺会导致许多细微、密集的钢材缺陷。这种情况需要精确的缺陷检测模型来进行有效保护。单级模型(基于 YOLO)因其计算效率高和适合实时在线应用而闻名,是当前模型中的热门选择。然而,现有的基于 YOLO 的模型往往无法检测到小特征。为了解决这个问题,我们在 YOLOv7 中引入了一种高效的钢表面缺陷检测模型,其中包含一个特征保存块(FPB)和位置感知特征金字塔网络(LAFPN)。FPB 使用快捷连接,允许上层直接访问详细信息,从而更有效地捕捉细微缺陷特征。此外,LAFPN 在特征融合阶段整合了坐标数据,从而增强了对小缺陷的检测。我们引入了一个新的损失函数来准确识别和定位小缺陷。在两个公共数据集上进行的广泛测试表明,与五个基准模型相比,我们的模型性能更优越,在 NEU-DET 数据集上达到了令人印象深刻的 80.8 mAP,在 GC10-DET 数据集上达到了 72.6 mAP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient minor defects detection on steel surface via res-attention and position encoding

Impurities and complex manufacturing processes result in many minor, dense steel defects. This situation requires precise defect detection models for effective protection. The single-stage model (based on YOLO) is a popular choice among current models, renowned for its computational efficiency and suitability for real-time online applications. However, existing YOLO-based models often fail to detect small features. To address this issue, we introduce an efficient steel surface defect detection model in YOLOv7, incorporating a feature preservation block (FPB) and location awareness feature pyramid network (LAFPN). The FPB uses shortcut connections that allow the upper layers to access detailed information directly, thus capturing minor defect features more effectively. Furthermore, LAFPN integrates coordinate data during the feature fusion phase, enhancing the detection of minor defects. We introduced a new loss function to identify and locate minor defects accurately. Extensive testing on two public datasets has demonstrated the superior performance of our model compared to five baseline models, achieving an impressive 80.8 mAP on the NEU-DET dataset and 72.6 mAP on the GC10-DET dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced deepfake detection with enhanced Resnet-18 and multilayer CNN max pooling Video-driven musical composition using large language model with memory-augmented state space 3D human pose estimation using spatiotemporal hypergraphs and its public benchmark on opera videos Topological structure extraction for computing surface–surface intersection curves Lunet: an enhanced upsampling fusion network with efficient self-attention for semantic segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1