SAFARM:基于模拟退火的关联规则挖掘框架

Preeti Kaur, Sujal Goel, Aryan Tyagi, Sharil Malik, Utkarsh Shrivastava
{"title":"SAFARM:基于模拟退火的关联规则挖掘框架","authors":"Preeti Kaur, Sujal Goel, Aryan Tyagi, Sharil Malik, Utkarsh Shrivastava","doi":"10.1007/s41870-024-02079-3","DOIUrl":null,"url":null,"abstract":"<p>The research paper introduces an algorithm called SAFARM which performs association rule mining with the help of simulated annealing. It’s a multi-objective problem with vast search space. The suggested approach is independent of the database as it does not require minimum support or minimum confidence specification. In the algorithm, a fitness function is designed to fulfill the required objective and the presentation of rules is proposed with a compact structure. The correctness and efficiency of the algorithm is verified by testing it on synthetic and real databases.</p>","PeriodicalId":14138,"journal":{"name":"International Journal of Information Technology","volume":"2012 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAFARM: simulated annealing based framework for association rule mining\",\"authors\":\"Preeti Kaur, Sujal Goel, Aryan Tyagi, Sharil Malik, Utkarsh Shrivastava\",\"doi\":\"10.1007/s41870-024-02079-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The research paper introduces an algorithm called SAFARM which performs association rule mining with the help of simulated annealing. It’s a multi-objective problem with vast search space. The suggested approach is independent of the database as it does not require minimum support or minimum confidence specification. In the algorithm, a fitness function is designed to fulfill the required objective and the presentation of rules is proposed with a compact structure. The correctness and efficiency of the algorithm is verified by testing it on synthetic and real databases.</p>\",\"PeriodicalId\":14138,\"journal\":{\"name\":\"International Journal of Information Technology\",\"volume\":\"2012 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41870-024-02079-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-024-02079-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究论文介绍了一种名为 SAFARM 的算法,该算法借助模拟退火技术进行关联规则挖掘。这是一个具有广阔搜索空间的多目标问题。所建议的方法与数据库无关,因为它不需要最小支持度或最小置信度规范。在该算法中,设计了一个拟合函数来实现所需的目标,并提出了结构紧凑的规则表述方式。通过在合成数据库和真实数据库上进行测试,验证了算法的正确性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SAFARM: simulated annealing based framework for association rule mining

The research paper introduces an algorithm called SAFARM which performs association rule mining with the help of simulated annealing. It’s a multi-objective problem with vast search space. The suggested approach is independent of the database as it does not require minimum support or minimum confidence specification. In the algorithm, a fitness function is designed to fulfill the required objective and the presentation of rules is proposed with a compact structure. The correctness and efficiency of the algorithm is verified by testing it on synthetic and real databases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical cryptanalysis of seven classical lightweight ciphers CNN-BO-LSTM: an ensemble framework for prognosis of liver cancer Architecting lymphoma fusion: PROMETHEE-II guided optimization of combination therapeutic synergy RBCA-ETS: enhancing extractive text summarization with contextual embedding and word-level attention RAMD and transient analysis of a juice clarification unit in sugar plants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1