{"title":"NSS-ML:利用机器学习的新型频谱感知框架,适用于认知无线电物联网网络","authors":"Nikhil Kumar Marriwala, Vinod Kumar Shukla, Manjula Shanbhog, Sunita Panda, Ruchi Kaushik, Deepak Rathore","doi":"10.1007/s41870-024-02121-4","DOIUrl":null,"url":null,"abstract":"<p>A key component of cognitive radio systems is spectrum sensing, which reduces coexistence problems and maximises spectrum efficiency. However, the introduction of multiple situations with distinct characteristics brought about by 5G communication presents problems for spectrum sensing to support a wide range of applications with high performance and flexible implementation. Inspired by these difficulties, a new method with a multi-layer extreme learning machine optimised for bats is presented in this study. This technique makes use of a variety of input vectors, such as channel ID, energy, distance, and received signal intensity, to enhance user categorization and sensing capabilities. Moreover, we compare the proposed method with the state-of-the-art spectrum sensing approaches in order to evaluate its effectiveness in 5G situations, especially in healthcare applications. Evaluation metrics including channel detection probability, sensitivity, and selectivity are carefully examined. The findings unequivocally prove the suggested spectrum sensing approach’s superiority over current methods and highlight its potential for smooth incorporation into a variety of 5G applications.</p>","PeriodicalId":14138,"journal":{"name":"International Journal of Information Technology","volume":"105 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NSS-ML: a Novel spectrum sensing framework using machine learning for cognitive radio IoT networks\",\"authors\":\"Nikhil Kumar Marriwala, Vinod Kumar Shukla, Manjula Shanbhog, Sunita Panda, Ruchi Kaushik, Deepak Rathore\",\"doi\":\"10.1007/s41870-024-02121-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A key component of cognitive radio systems is spectrum sensing, which reduces coexistence problems and maximises spectrum efficiency. However, the introduction of multiple situations with distinct characteristics brought about by 5G communication presents problems for spectrum sensing to support a wide range of applications with high performance and flexible implementation. Inspired by these difficulties, a new method with a multi-layer extreme learning machine optimised for bats is presented in this study. This technique makes use of a variety of input vectors, such as channel ID, energy, distance, and received signal intensity, to enhance user categorization and sensing capabilities. Moreover, we compare the proposed method with the state-of-the-art spectrum sensing approaches in order to evaluate its effectiveness in 5G situations, especially in healthcare applications. Evaluation metrics including channel detection probability, sensitivity, and selectivity are carefully examined. The findings unequivocally prove the suggested spectrum sensing approach’s superiority over current methods and highlight its potential for smooth incorporation into a variety of 5G applications.</p>\",\"PeriodicalId\":14138,\"journal\":{\"name\":\"International Journal of Information Technology\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41870-024-02121-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-024-02121-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
NSS-ML: a Novel spectrum sensing framework using machine learning for cognitive radio IoT networks
A key component of cognitive radio systems is spectrum sensing, which reduces coexistence problems and maximises spectrum efficiency. However, the introduction of multiple situations with distinct characteristics brought about by 5G communication presents problems for spectrum sensing to support a wide range of applications with high performance and flexible implementation. Inspired by these difficulties, a new method with a multi-layer extreme learning machine optimised for bats is presented in this study. This technique makes use of a variety of input vectors, such as channel ID, energy, distance, and received signal intensity, to enhance user categorization and sensing capabilities. Moreover, we compare the proposed method with the state-of-the-art spectrum sensing approaches in order to evaluate its effectiveness in 5G situations, especially in healthcare applications. Evaluation metrics including channel detection probability, sensitivity, and selectivity are carefully examined. The findings unequivocally prove the suggested spectrum sensing approach’s superiority over current methods and highlight its potential for smooth incorporation into a variety of 5G applications.