{"title":"外部刺激对确定性和随机性 Hindmarsh-Rose 神经元模型动态的影响","authors":"Cesar Manchein, Paulo C. Rech","doi":"10.1140/epjb/s10051-024-00751-y","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the nonlinear dynamics of the deterministic and stochastic Hindmarsh–Rose (HR) neuron models under the influence of an external sinusoidal electric current and magnetic flow effects. In the deterministic regime, in the absence of a magnetic field, we observe multistability between periodic and chaotic attractors. This is accompanied by the emergence of self-similar windows of chaotic dynamics that converge within a broad domain of periodic dynamics in parameter space. Introducing a magnetic flux partially suppresses chaotic dynamics while maintaining multistability. Under stochastic conditions due to the introduction of Gaussian noise with arbitrarily small intensity, <i>D</i>, noise triggers transitions between coexisting states, exhibiting a preference for specific attractors from the deterministic case without returning to any other coexisting metastable states. By increasing <i>D</i> and appropriately adjusting the remaining control parameters of the HR neuron model, it becomes feasible to achieve regimes of noise-induced chaos or noise-induced stabilization, effectively suppressing chaotic dynamics. Furthermore, within this framework, we explore the existence of transient chaotic dynamics.</p></div>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"97 8","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of external stimuli on the dynamics of deterministic and stochastic Hindmarsh–Rose neuron models\",\"authors\":\"Cesar Manchein, Paulo C. Rech\",\"doi\":\"10.1140/epjb/s10051-024-00751-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the nonlinear dynamics of the deterministic and stochastic Hindmarsh–Rose (HR) neuron models under the influence of an external sinusoidal electric current and magnetic flow effects. In the deterministic regime, in the absence of a magnetic field, we observe multistability between periodic and chaotic attractors. This is accompanied by the emergence of self-similar windows of chaotic dynamics that converge within a broad domain of periodic dynamics in parameter space. Introducing a magnetic flux partially suppresses chaotic dynamics while maintaining multistability. Under stochastic conditions due to the introduction of Gaussian noise with arbitrarily small intensity, <i>D</i>, noise triggers transitions between coexisting states, exhibiting a preference for specific attractors from the deterministic case without returning to any other coexisting metastable states. By increasing <i>D</i> and appropriately adjusting the remaining control parameters of the HR neuron model, it becomes feasible to achieve regimes of noise-induced chaos or noise-induced stabilization, effectively suppressing chaotic dynamics. Furthermore, within this framework, we explore the existence of transient chaotic dynamics.</p></div>\",\"PeriodicalId\":787,\"journal\":{\"name\":\"The European Physical Journal B\",\"volume\":\"97 8\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjb/s10051-024-00751-y\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00751-y","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了确定性和随机性 Hindmarsh-Rose 神经元模型在外部正弦电流和磁流效应影响下的非线性动力学。在确定性机制中,在没有磁场的情况下,我们观察到周期吸引子和混沌吸引子之间的多稳定性。与此同时,还出现了自相似的混沌动力学窗口,这些窗口在参数空间的周期动力学宽域内汇聚。引入磁通可以部分抑制混沌动力学,同时保持多稳定性。在随机条件下,由于引入了任意小强度(D)的高斯噪声,噪声触发了共存状态之间的转换,表现出对确定性情况下特定吸引子的偏好,而不会返回到任何其他共存的可变状态。通过增大 D 值并适当调整 HR 神经元模型的其余控制参数,可以实现噪声诱导的混沌或噪声诱导的稳定状态,从而有效抑制混沌动力学。此外,我们还在此框架内探索了瞬态混沌动力学的存在。
Effects of external stimuli on the dynamics of deterministic and stochastic Hindmarsh–Rose neuron models
We investigate the nonlinear dynamics of the deterministic and stochastic Hindmarsh–Rose (HR) neuron models under the influence of an external sinusoidal electric current and magnetic flow effects. In the deterministic regime, in the absence of a magnetic field, we observe multistability between periodic and chaotic attractors. This is accompanied by the emergence of self-similar windows of chaotic dynamics that converge within a broad domain of periodic dynamics in parameter space. Introducing a magnetic flux partially suppresses chaotic dynamics while maintaining multistability. Under stochastic conditions due to the introduction of Gaussian noise with arbitrarily small intensity, D, noise triggers transitions between coexisting states, exhibiting a preference for specific attractors from the deterministic case without returning to any other coexisting metastable states. By increasing D and appropriately adjusting the remaining control parameters of the HR neuron model, it becomes feasible to achieve regimes of noise-induced chaos or noise-induced stabilization, effectively suppressing chaotic dynamics. Furthermore, within this framework, we explore the existence of transient chaotic dynamics.