{"title":"(Cu50Zr43Al7)98Y2 块状金属玻璃的动力学研究和脆性","authors":"Mehdi Malekan, Alireza Jalali","doi":"10.1016/j.tca.2024.179836","DOIUrl":null,"url":null,"abstract":"<div><p>Crystallization transformation kinetics and fragility of (Cu<sub>50</sub>Zr<sub>43</sub>Al<sub>7</sub>)<sub>98</sub>Y<sub>2</sub> bulk metallic glass (BMG) were investigated at non-isothermal and isothermal conditions by differential scanning calorimetry. Activation energies for the BMG were calculated for the glass transition, onset crystallization, and crystallization peak using various methods of non-isothermal analysis. Results suggested that atomic rearrangement during glass transition is more complex than crystallization, and growth poses greater challenges than nucleation. Isothermal analysis conducted in the supercooled liquid region provides evidence of crystallization being controlled by diffusion, with a calculated mean Avrami exponent of 2.2. Additionally, the findings of fragility studies and kinetic studies demonstrated a strong correlation with the glass-forming ability (GFA), thereby validating the high GFA of the BMG analyzed in this study. Thus, this research results provide a detailed understanding of the complex crystallization kinetics, thermal behavior, and GFA of (Cu<sub>50</sub>Zr<sub>43</sub>Al<sub>7</sub>)<sub>98</sub>Y<sub>2</sub> BMG, emphasizing its potential in materials science applications.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":"740 ","pages":"Article 179836"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetics study and fragility of (Cu50Zr43Al7)98Y2 bulk metallic glass\",\"authors\":\"Mehdi Malekan, Alireza Jalali\",\"doi\":\"10.1016/j.tca.2024.179836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Crystallization transformation kinetics and fragility of (Cu<sub>50</sub>Zr<sub>43</sub>Al<sub>7</sub>)<sub>98</sub>Y<sub>2</sub> bulk metallic glass (BMG) were investigated at non-isothermal and isothermal conditions by differential scanning calorimetry. Activation energies for the BMG were calculated for the glass transition, onset crystallization, and crystallization peak using various methods of non-isothermal analysis. Results suggested that atomic rearrangement during glass transition is more complex than crystallization, and growth poses greater challenges than nucleation. Isothermal analysis conducted in the supercooled liquid region provides evidence of crystallization being controlled by diffusion, with a calculated mean Avrami exponent of 2.2. Additionally, the findings of fragility studies and kinetic studies demonstrated a strong correlation with the glass-forming ability (GFA), thereby validating the high GFA of the BMG analyzed in this study. Thus, this research results provide a detailed understanding of the complex crystallization kinetics, thermal behavior, and GFA of (Cu<sub>50</sub>Zr<sub>43</sub>Al<sub>7</sub>)<sub>98</sub>Y<sub>2</sub> BMG, emphasizing its potential in materials science applications.</p></div>\",\"PeriodicalId\":23058,\"journal\":{\"name\":\"Thermochimica Acta\",\"volume\":\"740 \",\"pages\":\"Article 179836\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermochimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040603124001758\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040603124001758","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Kinetics study and fragility of (Cu50Zr43Al7)98Y2 bulk metallic glass
Crystallization transformation kinetics and fragility of (Cu50Zr43Al7)98Y2 bulk metallic glass (BMG) were investigated at non-isothermal and isothermal conditions by differential scanning calorimetry. Activation energies for the BMG were calculated for the glass transition, onset crystallization, and crystallization peak using various methods of non-isothermal analysis. Results suggested that atomic rearrangement during glass transition is more complex than crystallization, and growth poses greater challenges than nucleation. Isothermal analysis conducted in the supercooled liquid region provides evidence of crystallization being controlled by diffusion, with a calculated mean Avrami exponent of 2.2. Additionally, the findings of fragility studies and kinetic studies demonstrated a strong correlation with the glass-forming ability (GFA), thereby validating the high GFA of the BMG analyzed in this study. Thus, this research results provide a detailed understanding of the complex crystallization kinetics, thermal behavior, and GFA of (Cu50Zr43Al7)98Y2 BMG, emphasizing its potential in materials science applications.
期刊介绍:
Thermochimica Acta publishes original research contributions covering all aspects of thermoanalytical and calorimetric methods and their application to experimental chemistry, physics, biology and engineering. The journal aims to span the whole range from fundamental research to practical application.
The journal focuses on the research that advances physical and analytical science of thermal phenomena. Therefore, the manuscripts are expected to provide important insights into the thermal phenomena studied or to propose significant improvements of analytical or computational techniques employed in thermal studies. Manuscripts that report the results of routine thermal measurements are not suitable for publication in Thermochimica Acta.
The journal particularly welcomes papers from newly emerging areas as well as from the traditional strength areas:
- New and improved instrumentation and methods
- Thermal properties and behavior of materials
- Kinetics of thermally stimulated processes