Omilla Ragavan, Muhammad Nazrul Hakim Abdullah, Lai Yen Fong, Vuanghao Lim, Yoke Keong Yong
{"title":"锌纳米结构:植物化学物质介导的生物合成及其抗炎作用简评","authors":"Omilla Ragavan, Muhammad Nazrul Hakim Abdullah, Lai Yen Fong, Vuanghao Lim, Yoke Keong Yong","doi":"10.1007/s10876-024-02681-2","DOIUrl":null,"url":null,"abstract":"<div><p>Chronic inflammation underpins many severe diseases, often requiring anti-inflammatory drugs that can have adverse effects. Medicinal herbs offer an alternative but suffer from poor solubility, limiting their efficacy. Nanotechnology, particularly zinc oxide nanoparticles (ZnO NPs), presents a promising solution to enhance the therapeutic potential of herbal compounds. This review examines the nature and benefits of ZnO NPs in drug delivery systems compared to other nanomaterials. It highlights the advantages of biogenic synthesis of ZnO NPs, detailing the eco-friendly formation mechanisms and common characterization methods. The anti-inflammatory effects of biosynthesized ZnO NPs over the last five years are comprehensively reviewed, with insights into their mechanisms of action. Additionally, the pharmacokinetic and toxicokinetic profiles of ZnO NPs are explored to understand their biokinetics post-drug release. In conclusion, biogenically synthesized ZnO NPs enhance the bioavailability of medicinal plant compounds, offering a compelling alternative for treating inflammatory conditions.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"35 7","pages":"2213 - 2230"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zinc Nanostructure: A Short Review on Phytochemicals-Mediated Biogenic Synthesis and Its Anti-Inflammatory Effects\",\"authors\":\"Omilla Ragavan, Muhammad Nazrul Hakim Abdullah, Lai Yen Fong, Vuanghao Lim, Yoke Keong Yong\",\"doi\":\"10.1007/s10876-024-02681-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chronic inflammation underpins many severe diseases, often requiring anti-inflammatory drugs that can have adverse effects. Medicinal herbs offer an alternative but suffer from poor solubility, limiting their efficacy. Nanotechnology, particularly zinc oxide nanoparticles (ZnO NPs), presents a promising solution to enhance the therapeutic potential of herbal compounds. This review examines the nature and benefits of ZnO NPs in drug delivery systems compared to other nanomaterials. It highlights the advantages of biogenic synthesis of ZnO NPs, detailing the eco-friendly formation mechanisms and common characterization methods. The anti-inflammatory effects of biosynthesized ZnO NPs over the last five years are comprehensively reviewed, with insights into their mechanisms of action. Additionally, the pharmacokinetic and toxicokinetic profiles of ZnO NPs are explored to understand their biokinetics post-drug release. In conclusion, biogenically synthesized ZnO NPs enhance the bioavailability of medicinal plant compounds, offering a compelling alternative for treating inflammatory conditions.</p></div>\",\"PeriodicalId\":618,\"journal\":{\"name\":\"Journal of Cluster Science\",\"volume\":\"35 7\",\"pages\":\"2213 - 2230\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cluster Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10876-024-02681-2\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02681-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Zinc Nanostructure: A Short Review on Phytochemicals-Mediated Biogenic Synthesis and Its Anti-Inflammatory Effects
Chronic inflammation underpins many severe diseases, often requiring anti-inflammatory drugs that can have adverse effects. Medicinal herbs offer an alternative but suffer from poor solubility, limiting their efficacy. Nanotechnology, particularly zinc oxide nanoparticles (ZnO NPs), presents a promising solution to enhance the therapeutic potential of herbal compounds. This review examines the nature and benefits of ZnO NPs in drug delivery systems compared to other nanomaterials. It highlights the advantages of biogenic synthesis of ZnO NPs, detailing the eco-friendly formation mechanisms and common characterization methods. The anti-inflammatory effects of biosynthesized ZnO NPs over the last five years are comprehensively reviewed, with insights into their mechanisms of action. Additionally, the pharmacokinetic and toxicokinetic profiles of ZnO NPs are explored to understand their biokinetics post-drug release. In conclusion, biogenically synthesized ZnO NPs enhance the bioavailability of medicinal plant compounds, offering a compelling alternative for treating inflammatory conditions.
期刊介绍:
The journal publishes the following types of papers: (a) original and important research;
(b) authoritative comprehensive reviews or short overviews of topics of current
interest; (c) brief but urgent communications on new significant research; and (d)
commentaries intended to foster the exchange of innovative or provocative ideas, and
to encourage dialogue, amongst researchers working in different cluster
disciplines.