Fernando S Filho, C E Fernández Noa, Carlos E Fiore, B Wijns and B Cleuren
{"title":"碰撞量子点机器的热力学:阶段的作用","authors":"Fernando S Filho, C E Fernández Noa, Carlos E Fiore, B Wijns and B Cleuren","doi":"10.1088/1751-8121/ad695e","DOIUrl":null,"url":null,"abstract":"Sequential (or collisional) engines have been put forward as an alternative candidate for the realisation of reliable engine setups. Despite this, the role of the different stages and the influence of the intermediate reservoirs is not well understood. We introduce the idea of conveniently adjusting/choosing intermediate reservoirs at engine devices as a strategy for optimizing its performance. This is done by considering a minimal model composed of a quantum-dot machine sequentially exposed to various reservoirs at each stage, and for which thermodynamic quantities (including power and efficiency) can be obtained exactly from the framework of stochastic thermodynamics, irrespective the number of stages. Results show that a significant gain can be obtained by increasing the number of stages and conveniently choosing their parameters.","PeriodicalId":16763,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamics of a collisional quantum-dot machine: the role of stages\",\"authors\":\"Fernando S Filho, C E Fernández Noa, Carlos E Fiore, B Wijns and B Cleuren\",\"doi\":\"10.1088/1751-8121/ad695e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sequential (or collisional) engines have been put forward as an alternative candidate for the realisation of reliable engine setups. Despite this, the role of the different stages and the influence of the intermediate reservoirs is not well understood. We introduce the idea of conveniently adjusting/choosing intermediate reservoirs at engine devices as a strategy for optimizing its performance. This is done by considering a minimal model composed of a quantum-dot machine sequentially exposed to various reservoirs at each stage, and for which thermodynamic quantities (including power and efficiency) can be obtained exactly from the framework of stochastic thermodynamics, irrespective the number of stages. Results show that a significant gain can be obtained by increasing the number of stages and conveniently choosing their parameters.\",\"PeriodicalId\":16763,\"journal\":{\"name\":\"Journal of Physics A: Mathematical and Theoretical\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics A: Mathematical and Theoretical\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1751-8121/ad695e\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad695e","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Thermodynamics of a collisional quantum-dot machine: the role of stages
Sequential (or collisional) engines have been put forward as an alternative candidate for the realisation of reliable engine setups. Despite this, the role of the different stages and the influence of the intermediate reservoirs is not well understood. We introduce the idea of conveniently adjusting/choosing intermediate reservoirs at engine devices as a strategy for optimizing its performance. This is done by considering a minimal model composed of a quantum-dot machine sequentially exposed to various reservoirs at each stage, and for which thermodynamic quantities (including power and efficiency) can be obtained exactly from the framework of stochastic thermodynamics, irrespective the number of stages. Results show that a significant gain can be obtained by increasing the number of stages and conveniently choosing their parameters.
期刊介绍:
Publishing 50 issues a year, Journal of Physics A: Mathematical and Theoretical is a major journal of theoretical physics reporting research on the mathematical structures that describe fundamental processes of the physical world and on the analytical, computational and numerical methods for exploring these structures.