具有共识约束条件的凸优化随机镜像后裔法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-08-05 DOI:10.1137/22m1515197
A. Borovykh, N. Kantas, P. Parpas, G. A. Pavliotis
{"title":"具有共识约束条件的凸优化随机镜像后裔法","authors":"A. Borovykh, N. Kantas, P. Parpas, G. A. Pavliotis","doi":"10.1137/22m1515197","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 2208-2241, September 2024. <br/> Abstract.The mirror descent algorithm is known to be effective in situations where it is beneficial to adapt the mirror map to the underlying geometry of the optimization model. However, the effect of mirror maps on the geometry of distributed optimization problems has not been previously addressed. In this paper we study an exact distributed mirror descent algorithm in continuous time under additive noise. We establish a linear convergence rate of the proposed dynamics for the setting of convex optimization. Our analysis draws motivation from the augmented Lagrangian and its relation to gradient tracking. To further explore the benefits of mirror maps in a distributed setting we present a preconditioned variant of our algorithm with an additional mirror map over the Lagrangian dual variables. This allows our method to adapt to both the geometry of the primal variables and the geometry of the consensus constraint. We also propose a Gauss–Seidel type discretization scheme for the proposed method and establish its linear convergence rate. For certain classes of problems we identify mirror maps that mitigate the effect of the graph’s spectral properties on the convergence rate of the algorithm. Using numerical experiments, we demonstrate the efficiency of the methodology on convex models, both with and without constraints. Our findings show that the proposed method outperforms other methods, especially in scenarios where the model’s geometry is not captured by the standard Euclidean norm.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Mirror Descent for Convex Optimization with Consensus Constraints\",\"authors\":\"A. Borovykh, N. Kantas, P. Parpas, G. A. Pavliotis\",\"doi\":\"10.1137/22m1515197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 2208-2241, September 2024. <br/> Abstract.The mirror descent algorithm is known to be effective in situations where it is beneficial to adapt the mirror map to the underlying geometry of the optimization model. However, the effect of mirror maps on the geometry of distributed optimization problems has not been previously addressed. In this paper we study an exact distributed mirror descent algorithm in continuous time under additive noise. We establish a linear convergence rate of the proposed dynamics for the setting of convex optimization. Our analysis draws motivation from the augmented Lagrangian and its relation to gradient tracking. To further explore the benefits of mirror maps in a distributed setting we present a preconditioned variant of our algorithm with an additional mirror map over the Lagrangian dual variables. This allows our method to adapt to both the geometry of the primal variables and the geometry of the consensus constraint. We also propose a Gauss–Seidel type discretization scheme for the proposed method and establish its linear convergence rate. For certain classes of problems we identify mirror maps that mitigate the effect of the graph’s spectral properties on the convergence rate of the algorithm. Using numerical experiments, we demonstrate the efficiency of the methodology on convex models, both with and without constraints. Our findings show that the proposed method outperforms other methods, especially in scenarios where the model’s geometry is not captured by the standard Euclidean norm.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1515197\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1515197","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 应用动力系统期刊》,第 23 卷第 3 期,第 2208-2241 页,2024 年 9 月。 摘要.众所周知,镜像下降算法在有利于镜像映射适应优化模型底层几何的情况下是有效的。然而,镜像图对分布式优化问题几何形状的影响以前还没有人研究过。在本文中,我们研究了连续时间内加法噪声下的精确分布式镜像下降算法。我们为凸优化设置建立了拟议动态的线性收敛率。我们的分析源于增强拉格朗日及其与梯度跟踪的关系。为了进一步探索镜像映射在分布式环境中的优势,我们提出了我们算法的预条件变体,在拉格朗日对偶变量上增加了一个镜像映射。这使得我们的方法既能适应原始变量的几何形状,也能适应共识约束的几何形状。我们还为所提方法提出了高斯-赛德尔式离散化方案,并确定了其线性收敛率。对于某些类别的问题,我们确定了镜像映射,以减轻图谱特性对算法收敛速度的影响。通过数值实验,我们证明了该方法在有约束和无约束的凸模型上的效率。我们的研究结果表明,所提出的方法优于其他方法,尤其是在模型的几何形状无法用标准欧几里得准则捕捉的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stochastic Mirror Descent for Convex Optimization with Consensus Constraints
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 2208-2241, September 2024.
Abstract.The mirror descent algorithm is known to be effective in situations where it is beneficial to adapt the mirror map to the underlying geometry of the optimization model. However, the effect of mirror maps on the geometry of distributed optimization problems has not been previously addressed. In this paper we study an exact distributed mirror descent algorithm in continuous time under additive noise. We establish a linear convergence rate of the proposed dynamics for the setting of convex optimization. Our analysis draws motivation from the augmented Lagrangian and its relation to gradient tracking. To further explore the benefits of mirror maps in a distributed setting we present a preconditioned variant of our algorithm with an additional mirror map over the Lagrangian dual variables. This allows our method to adapt to both the geometry of the primal variables and the geometry of the consensus constraint. We also propose a Gauss–Seidel type discretization scheme for the proposed method and establish its linear convergence rate. For certain classes of problems we identify mirror maps that mitigate the effect of the graph’s spectral properties on the convergence rate of the algorithm. Using numerical experiments, we demonstrate the efficiency of the methodology on convex models, both with and without constraints. Our findings show that the proposed method outperforms other methods, especially in scenarios where the model’s geometry is not captured by the standard Euclidean norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1