通过拉维斯相变改善 (Ti8Zr6Nb4V5Cr4)100-xAlx 轻质高熵合金的微观结构演变和力学性能

Qin Xu, Cheng-yuan Guo, Qi Wang, Peng-yu Sun, Ya-jun Yin, Rui-run Chen
{"title":"通过拉维斯相变改善 (Ti8Zr6Nb4V5Cr4)100-xAlx 轻质高熵合金的微观结构演变和力学性能","authors":"Qin Xu, Cheng-yuan Guo, Qi Wang, Peng-yu Sun, Ya-jun Yin, Rui-run Chen","doi":"10.1007/s42243-024-01280-9","DOIUrl":null,"url":null,"abstract":"<p>(Ti<sub>8</sub>Zr<sub>6</sub>Nb<sub>4</sub>V<sub>5</sub>Cr<sub>4</sub>)<sub>100−<i>x</i></sub>Al<sub><i>x</i></sub> (<i>x</i> = 0, 0.1, 0.2, 0.3, 0.4 at.%) lightweight high-entropy alloys with different contents of Al were prepared via vacuum non-consumable arc melting method. Effects of adding varying Al contents on phase constitution, microstructure characteristics and mechanical properties of the lightweight alloys were studied. Results show that Ti<sub>8</sub>Zr<sub>6</sub>Nb<sub>4</sub>V<sub>5</sub>Cr<sub>4</sub> alloy is composed of body-centered cubic (BCC) phase and C15 Laves phase, while (Ti<sub>8</sub>Zr<sub>6</sub>Nb<sub>4</sub>V<sub>5</sub>Cr<sub>4</sub>)<sub>100−<i>x</i></sub>Al<sub><i>x</i></sub> lightweight high-entropy alloys by addition of Al are composed of BCC phase and C14 Laves phase. Addition of Al into Ti<sub>8</sub>Zr<sub>6</sub>Nb<sub>4</sub>V<sub>5</sub>Cr<sub>4</sub> lightweight high-entropy alloy can transform C15 Laves phase to C14 Laves phase. With further addition of Al, BCC phase of alloys is significantly refined, and the volume fraction of C14 Laves phase is raised obviously. Meanwhile, the dimension of BCC phase in the alloy by addition of 0.3 at.% Al is the most refined and that of Laves phase is also obviously refined. Adding Al to Ti<sub>8</sub>Zr<sub>6</sub>Nb<sub>4</sub>V<sub>5</sub>Cr<sub>4</sub> alloy can not only reduce the density of (Ti<sub>8</sub>Zr<sub>6</sub>Nb<sub>4</sub>V<sub>5</sub>Cr<sub>4</sub>)<sub>100−<i>x</i></sub>Al<sub><i>x</i></sub> alloy, but also improve strength of (Ti<sub>8</sub>Zr<sub>6</sub>Nb<sub>4</sub>V<sub>5</sub>Cr<sub>4</sub>)<sub>100−<i>x</i></sub>Al<sub><i>x</i></sub> alloy. As Al content increased from 0 to 0.4 at.%, the density of the alloy decreased from 6.22 ± 0.875 to 5.79 ± 0.679 g cm<sup>−3</sup>. Moreover, compressive strength of the alloy by 0.3 at.% Al addition is the highest to 1996.9 MPa, while fracture strain of the alloy is 16.82%. Strength improvement of alloys mainly results from microstructure refinement and precipitation of C14 Laves by Al addition into Ti<sub>8</sub>Zr<sub>6</sub>Nb<sub>4</sub>V<sub>5</sub>Cr<sub>4</sub> lightweight high-entropy alloy.</p>","PeriodicalId":16151,"journal":{"name":"Journal of Iron and Steel Research International","volume":"7 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure evolution and mechanical properties improvement of (Ti8Zr6Nb4V5Cr4)100−xAlx lightweight high-entropy alloy by Laves phase transformation\",\"authors\":\"Qin Xu, Cheng-yuan Guo, Qi Wang, Peng-yu Sun, Ya-jun Yin, Rui-run Chen\",\"doi\":\"10.1007/s42243-024-01280-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>(Ti<sub>8</sub>Zr<sub>6</sub>Nb<sub>4</sub>V<sub>5</sub>Cr<sub>4</sub>)<sub>100−<i>x</i></sub>Al<sub><i>x</i></sub> (<i>x</i> = 0, 0.1, 0.2, 0.3, 0.4 at.%) lightweight high-entropy alloys with different contents of Al were prepared via vacuum non-consumable arc melting method. Effects of adding varying Al contents on phase constitution, microstructure characteristics and mechanical properties of the lightweight alloys were studied. Results show that Ti<sub>8</sub>Zr<sub>6</sub>Nb<sub>4</sub>V<sub>5</sub>Cr<sub>4</sub> alloy is composed of body-centered cubic (BCC) phase and C15 Laves phase, while (Ti<sub>8</sub>Zr<sub>6</sub>Nb<sub>4</sub>V<sub>5</sub>Cr<sub>4</sub>)<sub>100−<i>x</i></sub>Al<sub><i>x</i></sub> lightweight high-entropy alloys by addition of Al are composed of BCC phase and C14 Laves phase. Addition of Al into Ti<sub>8</sub>Zr<sub>6</sub>Nb<sub>4</sub>V<sub>5</sub>Cr<sub>4</sub> lightweight high-entropy alloy can transform C15 Laves phase to C14 Laves phase. With further addition of Al, BCC phase of alloys is significantly refined, and the volume fraction of C14 Laves phase is raised obviously. Meanwhile, the dimension of BCC phase in the alloy by addition of 0.3 at.% Al is the most refined and that of Laves phase is also obviously refined. Adding Al to Ti<sub>8</sub>Zr<sub>6</sub>Nb<sub>4</sub>V<sub>5</sub>Cr<sub>4</sub> alloy can not only reduce the density of (Ti<sub>8</sub>Zr<sub>6</sub>Nb<sub>4</sub>V<sub>5</sub>Cr<sub>4</sub>)<sub>100−<i>x</i></sub>Al<sub><i>x</i></sub> alloy, but also improve strength of (Ti<sub>8</sub>Zr<sub>6</sub>Nb<sub>4</sub>V<sub>5</sub>Cr<sub>4</sub>)<sub>100−<i>x</i></sub>Al<sub><i>x</i></sub> alloy. As Al content increased from 0 to 0.4 at.%, the density of the alloy decreased from 6.22 ± 0.875 to 5.79 ± 0.679 g cm<sup>−3</sup>. Moreover, compressive strength of the alloy by 0.3 at.% Al addition is the highest to 1996.9 MPa, while fracture strain of the alloy is 16.82%. Strength improvement of alloys mainly results from microstructure refinement and precipitation of C14 Laves by Al addition into Ti<sub>8</sub>Zr<sub>6</sub>Nb<sub>4</sub>V<sub>5</sub>Cr<sub>4</sub> lightweight high-entropy alloy.</p>\",\"PeriodicalId\":16151,\"journal\":{\"name\":\"Journal of Iron and Steel Research International\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Iron and Steel Research International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s42243-024-01280-9\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Iron and Steel Research International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42243-024-01280-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

(Ti8Zr6Nb4V5Cr4)100-xAlx (x = 0, 0.1, 0.2, 0.3, 0.4 at.%)不同铝含量的轻质高熵合金。研究了添加不同含量的铝对轻质合金的相组成、微观结构特征和机械性能的影响。结果表明,Ti8Zr6Nb4V5Cr4 合金由体心立方(BCC)相和 C15 Laves 相组成,而添加 Al 的 (Ti8Zr6Nb4V5Cr4)100-xAlx 轻质高熵合金由 BCC 相和 C14 Laves 相组成。在 Ti8Zr6Nb4V5Cr4 轻质高熵合金中添加 Al,可将 C15 Laves 相转变为 C14 Laves 相。随着 Al 的进一步添加,合金的 BCC 相显著细化,C14 Laves 相的体积分数明显提高。同时,添加 0.3% Al 的合金中 BCC 相的尺寸最细化,Laves 相的尺寸也明显细化。在 Ti8Zr6Nb4V5Cr4 合金中添加 Al 不仅能降低(Ti8Zr6Nb4V5Cr4)100-xAlx 合金的密度,还能提高(Ti8Zr6Nb4V5Cr4)100-xAlx 合金的强度。随着铝含量从 0% 增加到 0.4%,合金的密度从 6.22 ± 0.875 g cm-3 降至 5.79 ± 0.679 g cm-3。此外,添加 0.3 % Al 的合金的抗压强度最高,达到 1996.9 MPa,而合金的断裂应变为 16.82%。合金强度的提高主要源于 Ti8Zr6Nb4V5Cr4 轻质高熵合金的微观结构细化和 Al 添加后 C14 Laves 的析出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microstructure evolution and mechanical properties improvement of (Ti8Zr6Nb4V5Cr4)100−xAlx lightweight high-entropy alloy by Laves phase transformation

(Ti8Zr6Nb4V5Cr4)100−xAlx (x = 0, 0.1, 0.2, 0.3, 0.4 at.%) lightweight high-entropy alloys with different contents of Al were prepared via vacuum non-consumable arc melting method. Effects of adding varying Al contents on phase constitution, microstructure characteristics and mechanical properties of the lightweight alloys were studied. Results show that Ti8Zr6Nb4V5Cr4 alloy is composed of body-centered cubic (BCC) phase and C15 Laves phase, while (Ti8Zr6Nb4V5Cr4)100−xAlx lightweight high-entropy alloys by addition of Al are composed of BCC phase and C14 Laves phase. Addition of Al into Ti8Zr6Nb4V5Cr4 lightweight high-entropy alloy can transform C15 Laves phase to C14 Laves phase. With further addition of Al, BCC phase of alloys is significantly refined, and the volume fraction of C14 Laves phase is raised obviously. Meanwhile, the dimension of BCC phase in the alloy by addition of 0.3 at.% Al is the most refined and that of Laves phase is also obviously refined. Adding Al to Ti8Zr6Nb4V5Cr4 alloy can not only reduce the density of (Ti8Zr6Nb4V5Cr4)100−xAlx alloy, but also improve strength of (Ti8Zr6Nb4V5Cr4)100−xAlx alloy. As Al content increased from 0 to 0.4 at.%, the density of the alloy decreased from 6.22 ± 0.875 to 5.79 ± 0.679 g cm−3. Moreover, compressive strength of the alloy by 0.3 at.% Al addition is the highest to 1996.9 MPa, while fracture strain of the alloy is 16.82%. Strength improvement of alloys mainly results from microstructure refinement and precipitation of C14 Laves by Al addition into Ti8Zr6Nb4V5Cr4 lightweight high-entropy alloy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
16.00%
发文量
161
审稿时长
2.8 months
期刊介绍: Publishes critically reviewed original research of archival significance Covers hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, physical chemistry, solidification, mechanical working, solid state reactions, materials processing, and more Includes welding & joining, surface treatment, mathematical modeling, corrosion, wear and abrasion Journal of Iron and Steel Research International publishes original papers and occasional invited reviews on aspects of research and technology in the process metallurgy and metallic materials. Coverage emphasizes the relationships among the processing, structure and properties of metals, including advanced steel materials, superalloy, intermetallics, metallic functional materials, powder metallurgy, structural titanium alloy, composite steel materials, high entropy alloy, amorphous alloys, metallic nanomaterials, etc..
期刊最新文献
Enhanced steelmaking cost optimization and real-time alloying element yield prediction: a ferroalloy model based on machine learning and linear programming Effect of Zr on microstructure and mechanical properties of 304 stainless steel joints brazed by Ag–Cu–Sn–In filler metal Effect of reaction time on interaction between steel with and without La and MgO–C refractory Mechanical behavior of GH4720Li nickel-based alloy at intermediate temperature for different strain rates Corrosion and passive behavior of SLM and wrought TA15 titanium alloys in hydrochloric acid solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1