Giovanni Pagliarini , Simone Scaboro , Giuseppe Serra , Guido Sciavicco , Ionel Eduard Stan
{"title":"用于多元时间序列分类的神经符号时间决策树","authors":"Giovanni Pagliarini , Simone Scaboro , Giuseppe Serra , Guido Sciavicco , Ionel Eduard Stan","doi":"10.1016/j.ic.2024.105209","DOIUrl":null,"url":null,"abstract":"<div><p>Multivariate time series classification is an ubiquitous and widely studied problem. Due to their strong generalization capability, neural networks are suitable for this problem, but their intrinsic black-box nature often limits their applicability. Temporal decision trees are a relevant alternative to neural networks for the same task regarding classification performances while attaining higher levels of transparency and interpretability. In this work, we approach the problem of hybridizing these two techniques, and present three independent, natural hybridization solutions to study if, and in what measure, both the ability of neural networks to capture complex temporal patterns and the transparency and flexibility of temporal decision trees can be leveraged. To this end, we provide initial experimental results for several tasks in a binary classification setting, showing that our proposed neural-symbolic hybridization schemata may be a step towards accurate and interpretable models.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"301 ","pages":"Article 105209"},"PeriodicalIF":0.8000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0890540124000749/pdfft?md5=aee9f730063439e214c71730ad5c92be&pid=1-s2.0-S0890540124000749-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Neural-symbolic temporal decision trees for multivariate time series classification\",\"authors\":\"Giovanni Pagliarini , Simone Scaboro , Giuseppe Serra , Guido Sciavicco , Ionel Eduard Stan\",\"doi\":\"10.1016/j.ic.2024.105209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multivariate time series classification is an ubiquitous and widely studied problem. Due to their strong generalization capability, neural networks are suitable for this problem, but their intrinsic black-box nature often limits their applicability. Temporal decision trees are a relevant alternative to neural networks for the same task regarding classification performances while attaining higher levels of transparency and interpretability. In this work, we approach the problem of hybridizing these two techniques, and present three independent, natural hybridization solutions to study if, and in what measure, both the ability of neural networks to capture complex temporal patterns and the transparency and flexibility of temporal decision trees can be leveraged. To this end, we provide initial experimental results for several tasks in a binary classification setting, showing that our proposed neural-symbolic hybridization schemata may be a step towards accurate and interpretable models.</p></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"301 \",\"pages\":\"Article 105209\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0890540124000749/pdfft?md5=aee9f730063439e214c71730ad5c92be&pid=1-s2.0-S0890540124000749-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890540124000749\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540124000749","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Neural-symbolic temporal decision trees for multivariate time series classification
Multivariate time series classification is an ubiquitous and widely studied problem. Due to their strong generalization capability, neural networks are suitable for this problem, but their intrinsic black-box nature often limits their applicability. Temporal decision trees are a relevant alternative to neural networks for the same task regarding classification performances while attaining higher levels of transparency and interpretability. In this work, we approach the problem of hybridizing these two techniques, and present three independent, natural hybridization solutions to study if, and in what measure, both the ability of neural networks to capture complex temporal patterns and the transparency and flexibility of temporal decision trees can be leveraged. To this end, we provide initial experimental results for several tasks in a binary classification setting, showing that our proposed neural-symbolic hybridization schemata may be a step towards accurate and interpretable models.
期刊介绍:
Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as
-Biological computation and computational biology-
Computational complexity-
Computer theorem-proving-
Concurrency and distributed process theory-
Cryptographic theory-
Data base theory-
Decision problems in logic-
Design and analysis of algorithms-
Discrete optimization and mathematical programming-
Inductive inference and learning theory-
Logic & constraint programming-
Program verification & model checking-
Probabilistic & Quantum computation-
Semantics of programming languages-
Symbolic computation, lambda calculus, and rewriting systems-
Types and typechecking