用扩散模型生成 P 型 ATP 酶的多态构象

Jingtian Xu, Yong Wang
{"title":"用扩散模型生成 P 型 ATP 酶的多态构象","authors":"Jingtian Xu, Yong Wang","doi":"10.1101/2024.08.07.607107","DOIUrl":null,"url":null,"abstract":"Understanding and predicting the diverse conformational states of membrane proteins is essential for elucidating their biological functions. Despite advancements in computational methods, accurately capturing these complex structural changes remains a significant challenge. In this study, we introduce a method for predicting diverse functional states of membrane protein conformations using a diffusion model. Our approach integrates forward and backward diffusion processes, incorporating state classifiers and additional conditioners to control the generation gradient of conformational states. We specifically target the P-type ATPases, a key membrane transporter, for which we curated and expanded a structural dataset. By employing a graph neural network with a custom membrane constraint, our model generates precise structures for P-type ATPases across different functional states. This approach represents a significant step forward in computational structural biology and holds great potential for studying the dynamics of other membrane proteins.","PeriodicalId":501048,"journal":{"name":"bioRxiv - Biophysics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating Multi-state Conformations of P-type ATPases with a Diffusion Model\",\"authors\":\"Jingtian Xu, Yong Wang\",\"doi\":\"10.1101/2024.08.07.607107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding and predicting the diverse conformational states of membrane proteins is essential for elucidating their biological functions. Despite advancements in computational methods, accurately capturing these complex structural changes remains a significant challenge. In this study, we introduce a method for predicting diverse functional states of membrane protein conformations using a diffusion model. Our approach integrates forward and backward diffusion processes, incorporating state classifiers and additional conditioners to control the generation gradient of conformational states. We specifically target the P-type ATPases, a key membrane transporter, for which we curated and expanded a structural dataset. By employing a graph neural network with a custom membrane constraint, our model generates precise structures for P-type ATPases across different functional states. This approach represents a significant step forward in computational structural biology and holds great potential for studying the dynamics of other membrane proteins.\",\"PeriodicalId\":501048,\"journal\":{\"name\":\"bioRxiv - Biophysics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.07.607107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.07.607107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解和预测膜蛋白的各种构象状态对于阐明其生物功能至关重要。尽管计算方法不断进步,但准确捕捉这些复杂的结构变化仍是一项重大挑战。在本研究中,我们介绍了一种利用扩散模型预测膜蛋白构象的不同功能状态的方法。我们的方法整合了前向和后向扩散过程,纳入了状态分类器和附加调节器,以控制构象状态的生成梯度。我们特别以 P 型 ATP 酶(一种关键的膜转运体)为研究对象,并对其结构数据集进行了整理和扩充。通过使用带有自定义膜约束的图神经网络,我们的模型生成了 P 型 ATPases 在不同功能状态下的精确结构。这种方法标志着计算结构生物学向前迈出了重要一步,并为研究其他膜蛋白的动力学提供了巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generating Multi-state Conformations of P-type ATPases with a Diffusion Model
Understanding and predicting the diverse conformational states of membrane proteins is essential for elucidating their biological functions. Despite advancements in computational methods, accurately capturing these complex structural changes remains a significant challenge. In this study, we introduce a method for predicting diverse functional states of membrane protein conformations using a diffusion model. Our approach integrates forward and backward diffusion processes, incorporating state classifiers and additional conditioners to control the generation gradient of conformational states. We specifically target the P-type ATPases, a key membrane transporter, for which we curated and expanded a structural dataset. By employing a graph neural network with a custom membrane constraint, our model generates precise structures for P-type ATPases across different functional states. This approach represents a significant step forward in computational structural biology and holds great potential for studying the dynamics of other membrane proteins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
De-novo design of actively spinning and gyrating spherical micro-vesicles Localization of Albumin with Correlative Super Resolution Light- and Electron Microscopy in the Kidney Mechanical Profiling of Biopolymer Condensates through Acoustic Trapping Unlocking precision: How corneal cell area analysis revolutionises post-transplant stem cell monitoring A combined approach to extract rotational dynamics of globular proteins undergoing liquid-liquid phase separation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1