Max Dongsheng Yin, Olivier N. Lemaire, José Guadalupe Rosas-Jiménez, Mélissa Belhamri, Anna Shevchenko, Gerhard Hummer, Tristan Wagner, Bonnie J. Murphy
{"title":"乙酰-CoA合成快照,伍德-荣格达尔途径中二氧化碳固定的最后一步","authors":"Max Dongsheng Yin, Olivier N. Lemaire, José Guadalupe Rosas-Jiménez, Mélissa Belhamri, Anna Shevchenko, Gerhard Hummer, Tristan Wagner, Bonnie J. Murphy","doi":"10.1101/2024.08.05.606187","DOIUrl":null,"url":null,"abstract":"In the ancient microbial Wood-Ljungdahl pathway, CO<sub>2</sub> is fixed in a multi-step process with acetyl-CoA synthesis at the bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase complex (CODH/ACS). Here, we present catalytic snapshots of the CODH/ACS from the gas-converting acetogen Clostridium autoethanogenum, characterizing the molecular choreography of the overall reaction including electron transfer to the CODH for CO<sub>2</sub> reduction, methyl transfer from the corrinoid iron-sulfur protein (CoFeSP) partner to the ACS active site and acetyl-CoA production. Unlike CODH, the multidomain ACS undergoes large conformational changes to form an internal connection to the CODH active site, accommodate the CoFeSP for methyl transfer and protect the reaction intermediates. Altogether, the structures allow us to draw a detailed reaction mechanism of this enzyme crucial for CO<sub>2</sub> fixation in anaerobic organisms.","PeriodicalId":501048,"journal":{"name":"bioRxiv - Biophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Snapshots of acetyl-CoA synthesis, the final step of CO2 fixation in the Wood-Ljungdahl pathway\",\"authors\":\"Max Dongsheng Yin, Olivier N. Lemaire, José Guadalupe Rosas-Jiménez, Mélissa Belhamri, Anna Shevchenko, Gerhard Hummer, Tristan Wagner, Bonnie J. Murphy\",\"doi\":\"10.1101/2024.08.05.606187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the ancient microbial Wood-Ljungdahl pathway, CO<sub>2</sub> is fixed in a multi-step process with acetyl-CoA synthesis at the bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase complex (CODH/ACS). Here, we present catalytic snapshots of the CODH/ACS from the gas-converting acetogen Clostridium autoethanogenum, characterizing the molecular choreography of the overall reaction including electron transfer to the CODH for CO<sub>2</sub> reduction, methyl transfer from the corrinoid iron-sulfur protein (CoFeSP) partner to the ACS active site and acetyl-CoA production. Unlike CODH, the multidomain ACS undergoes large conformational changes to form an internal connection to the CODH active site, accommodate the CoFeSP for methyl transfer and protect the reaction intermediates. Altogether, the structures allow us to draw a detailed reaction mechanism of this enzyme crucial for CO<sub>2</sub> fixation in anaerobic organisms.\",\"PeriodicalId\":501048,\"journal\":{\"name\":\"bioRxiv - Biophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.05.606187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.05.606187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Snapshots of acetyl-CoA synthesis, the final step of CO2 fixation in the Wood-Ljungdahl pathway
In the ancient microbial Wood-Ljungdahl pathway, CO2 is fixed in a multi-step process with acetyl-CoA synthesis at the bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase complex (CODH/ACS). Here, we present catalytic snapshots of the CODH/ACS from the gas-converting acetogen Clostridium autoethanogenum, characterizing the molecular choreography of the overall reaction including electron transfer to the CODH for CO2 reduction, methyl transfer from the corrinoid iron-sulfur protein (CoFeSP) partner to the ACS active site and acetyl-CoA production. Unlike CODH, the multidomain ACS undergoes large conformational changes to form an internal connection to the CODH active site, accommodate the CoFeSP for methyl transfer and protect the reaction intermediates. Altogether, the structures allow us to draw a detailed reaction mechanism of this enzyme crucial for CO2 fixation in anaerobic organisms.