Marie Romedenne , Charles S. Hawkins , D. Pierce , Jiheon Jun , Sebastien Dryepondt , Bruce A. Pint
{"title":"评估 F82H 和 4340 钢在液态锂中的液态金属脆性","authors":"Marie Romedenne , Charles S. Hawkins , D. Pierce , Jiheon Jun , Sebastien Dryepondt , Bruce A. Pint","doi":"10.1016/j.fusengdes.2024.114601","DOIUrl":null,"url":null,"abstract":"<div><p>To evaluate the liquid metal embrittlement (LME) susceptibility of F82H, a reduced activation ferritic-martensitic (RAFM) steel, a testing procedure using hollow cylindrical tensile specimens was used. Tensile tests are compared between specimens filled with argon and lithium at 200 °C. To validate the procedure, initial testing was performed on type 4340 steel, which is well-known to exhibit LME. Compared to 4340 steel, F82H only showed minor effects of Li exposure, including pre-testing exposures with Li at 400 °C for 1 h and 500 °C for 500 h. Furthermore, changing the strain rate or tensile test temperature also did not show significant embrittlement.</p></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of liquid metal embrittlement of F82H and 4340 steels in liquid lithium\",\"authors\":\"Marie Romedenne , Charles S. Hawkins , D. Pierce , Jiheon Jun , Sebastien Dryepondt , Bruce A. Pint\",\"doi\":\"10.1016/j.fusengdes.2024.114601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To evaluate the liquid metal embrittlement (LME) susceptibility of F82H, a reduced activation ferritic-martensitic (RAFM) steel, a testing procedure using hollow cylindrical tensile specimens was used. Tensile tests are compared between specimens filled with argon and lithium at 200 °C. To validate the procedure, initial testing was performed on type 4340 steel, which is well-known to exhibit LME. Compared to 4340 steel, F82H only showed minor effects of Li exposure, including pre-testing exposures with Li at 400 °C for 1 h and 500 °C for 500 h. Furthermore, changing the strain rate or tensile test temperature also did not show significant embrittlement.</p></div>\",\"PeriodicalId\":55133,\"journal\":{\"name\":\"Fusion Engineering and Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fusion Engineering and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920379624004526\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920379624004526","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
为了评估 F82H(一种活化度降低的铁素体-马氏体(RAFM)钢)的液态金属脆性(LME)敏感性,采用了一种使用空心圆柱拉伸试样的测试程序。在 200 °C 下,对充入氩气和锂气的试样进行拉伸测试比较。为了验证该程序,对 4340 型钢材进行了初步测试,众所周知,4340 型钢材具有 LME 特性。与 4340 钢相比,F82H 在锂暴露下只表现出轻微的影响,包括在测试前将锂暴露于 400 °C 1 小时和 500 °C 500 小时。此外,改变应变速率或拉伸测试温度也未显示出明显的脆化。
Evaluation of liquid metal embrittlement of F82H and 4340 steels in liquid lithium
To evaluate the liquid metal embrittlement (LME) susceptibility of F82H, a reduced activation ferritic-martensitic (RAFM) steel, a testing procedure using hollow cylindrical tensile specimens was used. Tensile tests are compared between specimens filled with argon and lithium at 200 °C. To validate the procedure, initial testing was performed on type 4340 steel, which is well-known to exhibit LME. Compared to 4340 steel, F82H only showed minor effects of Li exposure, including pre-testing exposures with Li at 400 °C for 1 h and 500 °C for 500 h. Furthermore, changing the strain rate or tensile test temperature also did not show significant embrittlement.
期刊介绍:
The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.