及时改进还是微调?在计算社会科学任务中使用 LLM 的最佳实践

Anders Giovanni Møller, Luca Maria Aiello
{"title":"及时改进还是微调?在计算社会科学任务中使用 LLM 的最佳实践","authors":"Anders Giovanni Møller, Luca Maria Aiello","doi":"arxiv-2408.01346","DOIUrl":null,"url":null,"abstract":"Large Language Models are expressive tools that enable complex tasks of text\nunderstanding within Computational Social Science. Their versatility, while\nbeneficial, poses a barrier for establishing standardized best practices within\nthe field. To bring clarity on the values of different strategies, we present\nan overview of the performance of modern LLM-based classification methods on a\nbenchmark of 23 social knowledge tasks. Our results point to three best\npractices: select models with larger vocabulary and pre-training corpora; avoid\nsimple zero-shot in favor of AI-enhanced prompting; fine-tune on task-specific\ndata, and consider more complex forms instruction-tuning on multiple datasets\nonly when only training data is more abundant.","PeriodicalId":501043,"journal":{"name":"arXiv - PHYS - Physics and Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prompt Refinement or Fine-tuning? Best Practices for using LLMs in Computational Social Science Tasks\",\"authors\":\"Anders Giovanni Møller, Luca Maria Aiello\",\"doi\":\"arxiv-2408.01346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large Language Models are expressive tools that enable complex tasks of text\\nunderstanding within Computational Social Science. Their versatility, while\\nbeneficial, poses a barrier for establishing standardized best practices within\\nthe field. To bring clarity on the values of different strategies, we present\\nan overview of the performance of modern LLM-based classification methods on a\\nbenchmark of 23 social knowledge tasks. Our results point to three best\\npractices: select models with larger vocabulary and pre-training corpora; avoid\\nsimple zero-shot in favor of AI-enhanced prompting; fine-tune on task-specific\\ndata, and consider more complex forms instruction-tuning on multiple datasets\\nonly when only training data is more abundant.\",\"PeriodicalId\":501043,\"journal\":{\"name\":\"arXiv - PHYS - Physics and Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Physics and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Physics and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型是一种表现力极强的工具,能够在计算社会科学领域完成复杂的文本理解任务。它们的多功能性虽然有益,但却阻碍了在该领域内建立标准化的最佳实践。为了明确不同策略的价值,我们概述了基于 LLM 的现代分类方法在 23 个社会知识任务基准上的表现。我们的研究结果指出了三种最佳实践:选择具有较大词汇量和预训练语料库的模型;避免简单的 "归零",而采用人工智能增强型提示;在特定任务数据上进行微调,只有在训练数据较为丰富的情况下,才考虑在多个数据集上进行更复杂形式的指令调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prompt Refinement or Fine-tuning? Best Practices for using LLMs in Computational Social Science Tasks
Large Language Models are expressive tools that enable complex tasks of text understanding within Computational Social Science. Their versatility, while beneficial, poses a barrier for establishing standardized best practices within the field. To bring clarity on the values of different strategies, we present an overview of the performance of modern LLM-based classification methods on a benchmark of 23 social knowledge tasks. Our results point to three best practices: select models with larger vocabulary and pre-training corpora; avoid simple zero-shot in favor of AI-enhanced prompting; fine-tune on task-specific data, and consider more complex forms instruction-tuning on multiple datasets only when only training data is more abundant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Continuity equation and fundamental diagram of pedestrians Anomalous behavior of Replicator dynamics for the Prisoner's Dilemma on diluted lattices Quantifying the role of supernatural entities and the effect of missing data in Irish sagas Crossing the disciplines -- a starter toolkit for researchers who wish to explore early Irish literature Female representation across mythologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1