{"title":"重置作为非谐波电位的快速平衡协议","authors":"Rémi Goerlich, Tommer D. Keidar, Yael Roichman","doi":"10.1103/physrevresearch.6.033162","DOIUrl":null,"url":null,"abstract":"We present and characterize a method to accelerate the relaxation of a Brownian object between two distinct equilibrium states. Instead of relying on a deterministic time-dependent control parameter, we use stochastic resetting to guide and accelerate the transient evolution. The protocol is investigated theoretically, and its thermodynamic cost is evaluated with the tools of stochastic thermodynamics. Remarkably, we show that stochastic resetting significantly accelerates the relaxation to the final state. This stochastic protocol exhibits energetic and temporal characteristics that align with the scales observed in previously investigated deterministic protocols. Moreover, it expands the spectrum of stationary states that can be manipulated, incorporating new potential profiles achievable through experimentally viable protocols.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resetting as a swift equilibration protocol in an anharmonic potential\",\"authors\":\"Rémi Goerlich, Tommer D. Keidar, Yael Roichman\",\"doi\":\"10.1103/physrevresearch.6.033162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present and characterize a method to accelerate the relaxation of a Brownian object between two distinct equilibrium states. Instead of relying on a deterministic time-dependent control parameter, we use stochastic resetting to guide and accelerate the transient evolution. The protocol is investigated theoretically, and its thermodynamic cost is evaluated with the tools of stochastic thermodynamics. Remarkably, we show that stochastic resetting significantly accelerates the relaxation to the final state. This stochastic protocol exhibits energetic and temporal characteristics that align with the scales observed in previously investigated deterministic protocols. Moreover, it expands the spectrum of stationary states that can be manipulated, incorporating new potential profiles achievable through experimentally viable protocols.\",\"PeriodicalId\":20546,\"journal\":{\"name\":\"Physical Review Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevresearch.6.033162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.033162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resetting as a swift equilibration protocol in an anharmonic potential
We present and characterize a method to accelerate the relaxation of a Brownian object between two distinct equilibrium states. Instead of relying on a deterministic time-dependent control parameter, we use stochastic resetting to guide and accelerate the transient evolution. The protocol is investigated theoretically, and its thermodynamic cost is evaluated with the tools of stochastic thermodynamics. Remarkably, we show that stochastic resetting significantly accelerates the relaxation to the final state. This stochastic protocol exhibits energetic and temporal characteristics that align with the scales observed in previously investigated deterministic protocols. Moreover, it expands the spectrum of stationary states that can be manipulated, incorporating new potential profiles achievable through experimentally viable protocols.