Madalitso Mame, Yingui Qiu, Shuai Huang, Kun Du, Jian Zhou
{"title":"使用基于 TPE 树的模型方法和 SHapley 加性前规划预测岩石爆破碎裂中的平均碎块大小","authors":"Madalitso Mame, Yingui Qiu, Shuai Huang, Kun Du, Jian Zhou","doi":"10.1007/s42461-024-01057-4","DOIUrl":null,"url":null,"abstract":"<p>The optimum fragmentation size measures the quality of a blasting operation. Boulders or large fragments can result in more costs because they need secondary blasting, while small fragments can result in ore loss and dilution. Therefore, it is very significant to accurately predict the mean block size to reduce production costs and enhance efficiency. Due to the shortfalls of the empirical models, scholars have been inclined toward artificial intelligence (AI) techniques for fragmentation size prediction over the decades. Firstly, in this study, three tree-based models, i.e., the random forest (RF), extra-trees (ET), and CatBoost (CB), are employed for basic prediction. The model uses eight parameters, seven input parameters, and mean block size (MBS) as the output parameter. Secondly, their performance and hyper-parameters were fine-tuned using Bayesian optimization: tree-structured Parzen estimators (TPE) algorithm using Optuna. Among the three models, the TPE-ET model showed superior performance with the following metric scores on the training dataset: 0.9896, 0.0184, and 0.0003, and on the test dataset with the following metric scores: 0.9463, 0.0415, and 0.0017, i.e., <i>R</i><sup>2</sup>, RMSE, and MSE, respectively. In conclusion, analysis by the SHapley Additive ExPlanations approach shows that elastic modulus significantly impacts the model’s prediction of rock fragmentation.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"26 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mean Block Size Prediction in Rock Blast Fragmentation Using TPE-Tree-Based Model Approach with SHapley Additive exPlanations\",\"authors\":\"Madalitso Mame, Yingui Qiu, Shuai Huang, Kun Du, Jian Zhou\",\"doi\":\"10.1007/s42461-024-01057-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The optimum fragmentation size measures the quality of a blasting operation. Boulders or large fragments can result in more costs because they need secondary blasting, while small fragments can result in ore loss and dilution. Therefore, it is very significant to accurately predict the mean block size to reduce production costs and enhance efficiency. Due to the shortfalls of the empirical models, scholars have been inclined toward artificial intelligence (AI) techniques for fragmentation size prediction over the decades. Firstly, in this study, three tree-based models, i.e., the random forest (RF), extra-trees (ET), and CatBoost (CB), are employed for basic prediction. The model uses eight parameters, seven input parameters, and mean block size (MBS) as the output parameter. Secondly, their performance and hyper-parameters were fine-tuned using Bayesian optimization: tree-structured Parzen estimators (TPE) algorithm using Optuna. Among the three models, the TPE-ET model showed superior performance with the following metric scores on the training dataset: 0.9896, 0.0184, and 0.0003, and on the test dataset with the following metric scores: 0.9463, 0.0415, and 0.0017, i.e., <i>R</i><sup>2</sup>, RMSE, and MSE, respectively. In conclusion, analysis by the SHapley Additive ExPlanations approach shows that elastic modulus significantly impacts the model’s prediction of rock fragmentation.</p>\",\"PeriodicalId\":18588,\"journal\":{\"name\":\"Mining, Metallurgy & Exploration\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining, Metallurgy & Exploration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42461-024-01057-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining, Metallurgy & Exploration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01057-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Mean Block Size Prediction in Rock Blast Fragmentation Using TPE-Tree-Based Model Approach with SHapley Additive exPlanations
The optimum fragmentation size measures the quality of a blasting operation. Boulders or large fragments can result in more costs because they need secondary blasting, while small fragments can result in ore loss and dilution. Therefore, it is very significant to accurately predict the mean block size to reduce production costs and enhance efficiency. Due to the shortfalls of the empirical models, scholars have been inclined toward artificial intelligence (AI) techniques for fragmentation size prediction over the decades. Firstly, in this study, three tree-based models, i.e., the random forest (RF), extra-trees (ET), and CatBoost (CB), are employed for basic prediction. The model uses eight parameters, seven input parameters, and mean block size (MBS) as the output parameter. Secondly, their performance and hyper-parameters were fine-tuned using Bayesian optimization: tree-structured Parzen estimators (TPE) algorithm using Optuna. Among the three models, the TPE-ET model showed superior performance with the following metric scores on the training dataset: 0.9896, 0.0184, and 0.0003, and on the test dataset with the following metric scores: 0.9463, 0.0415, and 0.0017, i.e., R2, RMSE, and MSE, respectively. In conclusion, analysis by the SHapley Additive ExPlanations approach shows that elastic modulus significantly impacts the model’s prediction of rock fragmentation.
期刊介绍:
The aim of this international peer-reviewed journal of the Society for Mining, Metallurgy & Exploration (SME) is to provide a broad-based forum for the exchange of real-world and theoretical knowledge from academia, government and industry that is pertinent to mining, mineral/metallurgical processing, exploration and other fields served by the Society.
The journal publishes high-quality original research publications, in-depth special review articles, reviews of state-of-the-art and innovative technologies and industry methodologies, communications of work of topical and emerging interest, and other works that enhance understanding on both the fundamental and practical levels.