低速准垂直冲击模拟中的静电波和电子洞

Artem Bohdan, Aaron Tran, Lorenzo Sironi, Lynn B. Wilson III
{"title":"低速准垂直冲击模拟中的静电波和电子洞","authors":"Artem Bohdan, Aaron Tran, Lorenzo Sironi, Lynn B. Wilson III","doi":"arxiv-2408.01699","DOIUrl":null,"url":null,"abstract":"Collisionless low Mach number shocks are abundant in astrophysical and space\nplasma environments, exhibiting complex wave activity and wave-particle\ninteractions. In this paper, we present 2D Particle-in-Cell (PIC) simulations\nof quasi-perpendicular nonrelativistic ($\\vsh \\approx (5500-22000)$ km/s) low\nMach number shocks, with a specific focus on studying electrostatic waves in\nthe shock ramp and the precursor regions. In these shocks, an ion-scale oblique\nwhistler wave creates a configuration with two hot counter-streaming electron\nbeams, which drive unstable electron acoustic waves (EAWs) that can turn into\nelectrostatic solitary waves (ESWs) at the late stage of their evolution. By\nconducting simulations with periodic boundaries, we show that EAW properties\nagree with linear dispersion analysis. The characteristics of ESWs in shock\nsimulations, including their wavelength and amplitude, depend on the shock\nvelocity. When extrapolated to shocks with realistic velocities ($\\vsh \\approx\n300$ km/s), the ESW wavelength is reduced to one tenth of the electron skin\ndepth and the ESW amplitude is anticipated to surpass that of the quasi-static\nelectric field by more than a factor of 100. These theoretical predictions may\nexplain a discrepancy, between PIC and satellite measurements, in the relative\namplitude of high- and low-frequency electric field fluctuations.","PeriodicalId":501423,"journal":{"name":"arXiv - PHYS - Space Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrostatic Waves and Electron Holes in Simulations of Low-Mach Quasi-Perpendicular Shocks\",\"authors\":\"Artem Bohdan, Aaron Tran, Lorenzo Sironi, Lynn B. Wilson III\",\"doi\":\"arxiv-2408.01699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collisionless low Mach number shocks are abundant in astrophysical and space\\nplasma environments, exhibiting complex wave activity and wave-particle\\ninteractions. In this paper, we present 2D Particle-in-Cell (PIC) simulations\\nof quasi-perpendicular nonrelativistic ($\\\\vsh \\\\approx (5500-22000)$ km/s) low\\nMach number shocks, with a specific focus on studying electrostatic waves in\\nthe shock ramp and the precursor regions. In these shocks, an ion-scale oblique\\nwhistler wave creates a configuration with two hot counter-streaming electron\\nbeams, which drive unstable electron acoustic waves (EAWs) that can turn into\\nelectrostatic solitary waves (ESWs) at the late stage of their evolution. By\\nconducting simulations with periodic boundaries, we show that EAW properties\\nagree with linear dispersion analysis. The characteristics of ESWs in shock\\nsimulations, including their wavelength and amplitude, depend on the shock\\nvelocity. When extrapolated to shocks with realistic velocities ($\\\\vsh \\\\approx\\n300$ km/s), the ESW wavelength is reduced to one tenth of the electron skin\\ndepth and the ESW amplitude is anticipated to surpass that of the quasi-static\\nelectric field by more than a factor of 100. These theoretical predictions may\\nexplain a discrepancy, between PIC and satellite measurements, in the relative\\namplitude of high- and low-frequency electric field fluctuations.\",\"PeriodicalId\":501423,\"journal\":{\"name\":\"arXiv - PHYS - Space Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Space Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Space Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无碰撞低马赫数冲击在天体物理和空间等离子体环境中大量存在,表现出复杂的波活动和波粒相互作用。在本文中,我们介绍了对准垂直非相对论($\vsh \approx (5500-22000)$ km/s)低马赫数冲击的二维粒子在胞(PIC)模拟,重点研究了冲击斜坡和前驱区的静电波。在这些冲击中,离子尺度的斜啸叫波产生了两个热的反向流电子束构型,从而驱动了不稳定的电子声波(EAWs),这些电子声波在其演化的晚期阶段会转变成静电孤波(ESWs)。通过对周期性边界进行模拟,我们发现电子声波的特性与线性弥散分析相吻合。冲击模拟中静电孤波的特性,包括波长和振幅,取决于冲击速度。当外推法应用到实际速度($\vsh \approx$ 300 km/s)的冲击时,ESW的波长会减小到电子深度的十分之一,而ESW的振幅预计会超过准静电场的100倍以上。这些理论预测可以解释事先知情同意程序和卫星测量之间在高频和低频电场波动的相对振幅方面的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrostatic Waves and Electron Holes in Simulations of Low-Mach Quasi-Perpendicular Shocks
Collisionless low Mach number shocks are abundant in astrophysical and space plasma environments, exhibiting complex wave activity and wave-particle interactions. In this paper, we present 2D Particle-in-Cell (PIC) simulations of quasi-perpendicular nonrelativistic ($\vsh \approx (5500-22000)$ km/s) low Mach number shocks, with a specific focus on studying electrostatic waves in the shock ramp and the precursor regions. In these shocks, an ion-scale oblique whistler wave creates a configuration with two hot counter-streaming electron beams, which drive unstable electron acoustic waves (EAWs) that can turn into electrostatic solitary waves (ESWs) at the late stage of their evolution. By conducting simulations with periodic boundaries, we show that EAW properties agree with linear dispersion analysis. The characteristics of ESWs in shock simulations, including their wavelength and amplitude, depend on the shock velocity. When extrapolated to shocks with realistic velocities ($\vsh \approx 300$ km/s), the ESW wavelength is reduced to one tenth of the electron skin depth and the ESW amplitude is anticipated to surpass that of the quasi-static electric field by more than a factor of 100. These theoretical predictions may explain a discrepancy, between PIC and satellite measurements, in the relative amplitude of high- and low-frequency electric field fluctuations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-similar solutions of oscillatory reconnection: parameter study of magnetic field strength and background temperature Post-Keplerian perturbations of the hyperbolic motion in the field of a massive, rotating object On the Euler-type gravitomagnetic orbital effects in the field of a precessing body A Pileup of Coronal Mass Ejections Produced the Largest Geomagnetic Storm in Two Decades Alpha-Proton Differential Flow of A Coronal Mass Ejection at 15 Solar Radii
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1