{"title":"食品用硅胶模具的安全评估:全面分析欧洲市场的迁移模式和挥发性化合物释放情况","authors":"Magdalena Wrona , Lucía Aparicio , Valeria Alloca , Raquel Becerril , Cristina Nerín , Esther Asensio","doi":"10.1016/j.fpsl.2024.101334","DOIUrl":null,"url":null,"abstract":"<div><p>Silicones can contain oligomers known as siloxanes, which are either by-products of the polymerization process or arise from chemical reactions during processing. They may also have both intentionally and non-intentionally added substances, making it crucial to verify that silicone molds are safe and appropriate for food use. In this study 44 silicone molds available in the market from different European countries were studied. Triple sequential migration assays at 100 ºC for 8 h each using food simulants (3 % acetic acid, 20 % ethanol, and 50 % ethanol) were conducted. Some samples were also tested 4 h at 100 ºC. Global migration assessments were only conducted on turbid samples, while qualitative and quantitative analyses of volatile compounds were performed using solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) in total immersion mode. During the screening analysis of samples of 50 % ethanol at 100 ºC for 8 h a total of 112 different volatile compounds were tentatively identified by MS spectra and quantitatively estimated (LODs = 0.00005–0.014 mg/kg). However, there was no observable migration in the case of 3 % acetic acid and 20 % ethanol. All samples comply with the legislation (Royal Decree 847/2011) in the case of siloxanes. Some samples exceeded specific migration limits for volatile compounds other than siloxanes after third migration in 50 % EtOH at 100 ºC for 8 h.</p></div>","PeriodicalId":12377,"journal":{"name":"Food Packaging and Shelf Life","volume":"45 ","pages":"Article 101334"},"PeriodicalIF":8.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214289424000991/pdfft?md5=bb7c8feb8167d7c3b2cfd6a118a080b7&pid=1-s2.0-S2214289424000991-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Safety assessment of silicone molds for food use: A comprehensive analysis of migration patterns and volatile compound release in European markets\",\"authors\":\"Magdalena Wrona , Lucía Aparicio , Valeria Alloca , Raquel Becerril , Cristina Nerín , Esther Asensio\",\"doi\":\"10.1016/j.fpsl.2024.101334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Silicones can contain oligomers known as siloxanes, which are either by-products of the polymerization process or arise from chemical reactions during processing. They may also have both intentionally and non-intentionally added substances, making it crucial to verify that silicone molds are safe and appropriate for food use. In this study 44 silicone molds available in the market from different European countries were studied. Triple sequential migration assays at 100 ºC for 8 h each using food simulants (3 % acetic acid, 20 % ethanol, and 50 % ethanol) were conducted. Some samples were also tested 4 h at 100 ºC. Global migration assessments were only conducted on turbid samples, while qualitative and quantitative analyses of volatile compounds were performed using solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) in total immersion mode. During the screening analysis of samples of 50 % ethanol at 100 ºC for 8 h a total of 112 different volatile compounds were tentatively identified by MS spectra and quantitatively estimated (LODs = 0.00005–0.014 mg/kg). However, there was no observable migration in the case of 3 % acetic acid and 20 % ethanol. All samples comply with the legislation (Royal Decree 847/2011) in the case of siloxanes. Some samples exceeded specific migration limits for volatile compounds other than siloxanes after third migration in 50 % EtOH at 100 ºC for 8 h.</p></div>\",\"PeriodicalId\":12377,\"journal\":{\"name\":\"Food Packaging and Shelf Life\",\"volume\":\"45 \",\"pages\":\"Article 101334\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214289424000991/pdfft?md5=bb7c8feb8167d7c3b2cfd6a118a080b7&pid=1-s2.0-S2214289424000991-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Packaging and Shelf Life\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214289424000991\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Packaging and Shelf Life","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214289424000991","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Safety assessment of silicone molds for food use: A comprehensive analysis of migration patterns and volatile compound release in European markets
Silicones can contain oligomers known as siloxanes, which are either by-products of the polymerization process or arise from chemical reactions during processing. They may also have both intentionally and non-intentionally added substances, making it crucial to verify that silicone molds are safe and appropriate for food use. In this study 44 silicone molds available in the market from different European countries were studied. Triple sequential migration assays at 100 ºC for 8 h each using food simulants (3 % acetic acid, 20 % ethanol, and 50 % ethanol) were conducted. Some samples were also tested 4 h at 100 ºC. Global migration assessments were only conducted on turbid samples, while qualitative and quantitative analyses of volatile compounds were performed using solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) in total immersion mode. During the screening analysis of samples of 50 % ethanol at 100 ºC for 8 h a total of 112 different volatile compounds were tentatively identified by MS spectra and quantitatively estimated (LODs = 0.00005–0.014 mg/kg). However, there was no observable migration in the case of 3 % acetic acid and 20 % ethanol. All samples comply with the legislation (Royal Decree 847/2011) in the case of siloxanes. Some samples exceeded specific migration limits for volatile compounds other than siloxanes after third migration in 50 % EtOH at 100 ºC for 8 h.
期刊介绍:
Food packaging is crucial for preserving food integrity throughout the distribution chain. It safeguards against contamination by physical, chemical, and biological agents, ensuring the safety and quality of processed foods. The evolution of novel food packaging, including modified atmosphere and active packaging, has extended shelf life, enhancing convenience for consumers. Shelf life, the duration a perishable item remains suitable for sale, use, or consumption, is intricately linked with food packaging, emphasizing its role in maintaining product quality and safety.