量子引力中的纠缠和广义贝里几何相位

Symmetry Pub Date : 2024-08-12 DOI:10.3390/sym16081026
Diego J. Cirilo-Lombardo, Norma G. Sanchez
{"title":"量子引力中的纠缠和广义贝里几何相位","authors":"Diego J. Cirilo-Lombardo, Norma G. Sanchez","doi":"10.3390/sym16081026","DOIUrl":null,"url":null,"abstract":"A new formalism is introduced that makes it possible to elucidate the physical and geometric content of quantum space–time. It is based on the Minimum Group Representation Principle (MGRP). Within this framework, new results for entanglement and geometrical/topological phases are found and implemented in cosmological and black hole space–times. Our main results here are as follows: (i) We find the Berry phases for inflation and for the cosmological perturbations and express them in terms of the observables, such as the spectral scalar and tensor indices, nS and nT, and the tensor-to-scalar ratio r. The Berry phase for de Sitter inflation is imaginary with the sign describing the exponential acceleration. (ii) The pure entangled states in the minimum group (metaplectic) Mp(n) representation for quantum de Sitter space–time and black holes are found. (iii) For entanglement, the relation between the Schmidt type representation and the physical states of the Mp(n) group is found: This is a new non-diagonal coherent state representation complementary to the known Sudarshan diagonal one. (iv) Mean value generators of Mp(2) are related to the adiabatic invariant and topological charge of the space–time, (matrix element of the transition −∞<t<∞). (v) The basic even and odd n-sectors of the Hilbert space are intrinsic to the quantum space–time and its discrete levels (in particular, continuum for n→∞), they do not require any extrinsic generation process such as the standard Schrodinger cat states, and are entangled. (vi) The gravity or cosmological on one side and another of the Planck scale are entangled. Examples: The quantum primordial trans-Planckian de Sitter vacuum and the classical late de Sitter vacuum today; the central quantum gravity region and the external classical gravity region of black holes. The classical and quantum dual gravity regions of the space–time are entangled. (vii) The general classical-quantum gravity duality is associated with the Metaplectic Mp(n) group symmetry which provides the complete full covering of the phase space and of the quantum space–time mapped from it.","PeriodicalId":501198,"journal":{"name":"Symmetry","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity\",\"authors\":\"Diego J. Cirilo-Lombardo, Norma G. Sanchez\",\"doi\":\"10.3390/sym16081026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new formalism is introduced that makes it possible to elucidate the physical and geometric content of quantum space–time. It is based on the Minimum Group Representation Principle (MGRP). Within this framework, new results for entanglement and geometrical/topological phases are found and implemented in cosmological and black hole space–times. Our main results here are as follows: (i) We find the Berry phases for inflation and for the cosmological perturbations and express them in terms of the observables, such as the spectral scalar and tensor indices, nS and nT, and the tensor-to-scalar ratio r. The Berry phase for de Sitter inflation is imaginary with the sign describing the exponential acceleration. (ii) The pure entangled states in the minimum group (metaplectic) Mp(n) representation for quantum de Sitter space–time and black holes are found. (iii) For entanglement, the relation between the Schmidt type representation and the physical states of the Mp(n) group is found: This is a new non-diagonal coherent state representation complementary to the known Sudarshan diagonal one. (iv) Mean value generators of Mp(2) are related to the adiabatic invariant and topological charge of the space–time, (matrix element of the transition −∞<t<∞). (v) The basic even and odd n-sectors of the Hilbert space are intrinsic to the quantum space–time and its discrete levels (in particular, continuum for n→∞), they do not require any extrinsic generation process such as the standard Schrodinger cat states, and are entangled. (vi) The gravity or cosmological on one side and another of the Planck scale are entangled. Examples: The quantum primordial trans-Planckian de Sitter vacuum and the classical late de Sitter vacuum today; the central quantum gravity region and the external classical gravity region of black holes. The classical and quantum dual gravity regions of the space–time are entangled. (vii) The general classical-quantum gravity duality is associated with the Metaplectic Mp(n) group symmetry which provides the complete full covering of the phase space and of the quantum space–time mapped from it.\",\"PeriodicalId\":501198,\"journal\":{\"name\":\"Symmetry\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/sym16081026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym16081026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了一种新的形式主义,使阐明量子时空的物理和几何内容成为可能。它以最小群表示原理(MGRP)为基础。在这一框架内,我们发现了纠缠和几何/拓扑相位的新结果,并在宇宙学和黑洞时空中加以实现。我们的主要成果如下(i) 我们找到了暴胀和宇宙学扰动的贝里相位,并用光谱标量和张量指数 nS 和 nT 以及张量与标量之比 r 等观测指标来表示。(ii) 发现了量子德西特时空和黑洞在最小群(元映射)Mp(n) 表示中的纯纠缠态。(iii) 就纠缠而言,找到了施密特型表示与 Mp(n) 群物理状态之间的关系:这是一种新的非对角相干态表示,是对已知须弥对角表示的补充。(iv) Mp(2) 的均值发生器与绝热不变量和时空拓扑电荷有关(转换的矩阵元素-∞本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Entanglement and Generalized Berry Geometrical Phases in Quantum Gravity
A new formalism is introduced that makes it possible to elucidate the physical and geometric content of quantum space–time. It is based on the Minimum Group Representation Principle (MGRP). Within this framework, new results for entanglement and geometrical/topological phases are found and implemented in cosmological and black hole space–times. Our main results here are as follows: (i) We find the Berry phases for inflation and for the cosmological perturbations and express them in terms of the observables, such as the spectral scalar and tensor indices, nS and nT, and the tensor-to-scalar ratio r. The Berry phase for de Sitter inflation is imaginary with the sign describing the exponential acceleration. (ii) The pure entangled states in the minimum group (metaplectic) Mp(n) representation for quantum de Sitter space–time and black holes are found. (iii) For entanglement, the relation between the Schmidt type representation and the physical states of the Mp(n) group is found: This is a new non-diagonal coherent state representation complementary to the known Sudarshan diagonal one. (iv) Mean value generators of Mp(2) are related to the adiabatic invariant and topological charge of the space–time, (matrix element of the transition −∞
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three-Dimensional Moran Walk with Resets The Optimization of Aviation Technologies and Design Strategies for a Carbon-Neutral Future A Channel-Sensing-Based Multipath Multihop Cooperative Transmission Mechanism for UE Aggregation in Asymmetric IoE Scenarios A New Multimodal Modification of the Skew Family of Distributions: Properties and Applications to Medical and Environmental Data Balance Controller Design for Inverted Pendulum Considering Detail Reward Function and Two-Phase Learning Protocol
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1