低碳微合金铁素体-珠光体钢和铁素体-贝氏体钢的拉伸法兰性能

Santosh Kumar, G. K. Mandal, K. Mukherjee
{"title":"低碳微合金铁素体-珠光体钢和铁素体-贝氏体钢的拉伸法兰性能","authors":"Santosh Kumar, G. K. Mandal, K. Mukherjee","doi":"10.1007/s11661-024-07539-w","DOIUrl":null,"url":null,"abstract":"<p>The application of low carbon micro-alloyed steel sheets in chassis and frame parts of automobiles demands high formability during hot or cold forming operations to produce various intricate shapes. In view of the forming applications, stretch flangeability is considered as one of the most important critical parameters for these steel grades. The stretch-flangeability of micro-alloyed steels, with three different types of microstructure consisting of mainly single-phase ferrite, ferrite-pearlite and ferrite-bainite micro-constituents, is evaluated in this investigation based on hole expansion ratio (HER). The desired microstructures of the low carbon steels micro-alloyed with Nb, Nb-V and Nb-V-Ti steels were obtained at three different coiling temperatures by systematically varying the plant operating process parameters. While Micro-alloying elements largely affect the mechanical strength and ductility of the steel, its direct impact on HER value and fracture behavior are not correlated. The correlation of microstructure with tensile strength and ductility have been attempted for the studied low carbon micro-alloyed steels and described in this paper. It is observed that single-phase steel consisting of soft ferritic matrix as well as steel with 5 to 15 pct pearlite uniformly distributed in ferrite matrix has better stretch flangeability and strength to hole expansion ratio correlation in comparison to ferrite-bainite steel.</p>","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stretch Flangeability of Low Carbon Micro-alloyed Ferrite-Pearlite and Ferrite-Bainite Steel\",\"authors\":\"Santosh Kumar, G. K. Mandal, K. Mukherjee\",\"doi\":\"10.1007/s11661-024-07539-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The application of low carbon micro-alloyed steel sheets in chassis and frame parts of automobiles demands high formability during hot or cold forming operations to produce various intricate shapes. In view of the forming applications, stretch flangeability is considered as one of the most important critical parameters for these steel grades. The stretch-flangeability of micro-alloyed steels, with three different types of microstructure consisting of mainly single-phase ferrite, ferrite-pearlite and ferrite-bainite micro-constituents, is evaluated in this investigation based on hole expansion ratio (HER). The desired microstructures of the low carbon steels micro-alloyed with Nb, Nb-V and Nb-V-Ti steels were obtained at three different coiling temperatures by systematically varying the plant operating process parameters. While Micro-alloying elements largely affect the mechanical strength and ductility of the steel, its direct impact on HER value and fracture behavior are not correlated. The correlation of microstructure with tensile strength and ductility have been attempted for the studied low carbon micro-alloyed steels and described in this paper. It is observed that single-phase steel consisting of soft ferritic matrix as well as steel with 5 to 15 pct pearlite uniformly distributed in ferrite matrix has better stretch flangeability and strength to hole expansion ratio correlation in comparison to ferrite-bainite steel.</p>\",\"PeriodicalId\":18504,\"journal\":{\"name\":\"Metallurgical and Materials Transactions A\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Transactions A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11661-024-07539-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11661-024-07539-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

低碳微合金钢板在汽车底盘和车架部件中的应用要求在热成型或冷成型操作中具有较高的成型性,以生产出各种复杂的形状。考虑到成型应用,拉伸法兰性能被认为是这些钢种最重要的关键参数之一。微合金钢具有三种不同类型的微结构,主要由单相铁素体、铁素体-珠光体和铁素体-贝氏体微成分组成,本研究根据孔膨胀率(HER)评估了微合金钢的拉伸法兰性。通过系统地改变工厂操作工艺参数,在三种不同的卷取温度下获得了与 Nb、Nb-V 和 Nb-V-Ti 钢微合金化的低碳钢所需的微观结构。虽然微合金元素在很大程度上影响了钢的机械强度和延展性,但其对 HER 值和断裂行为的直接影响并不相关。本文对所研究的低碳微合金钢的微观结构与抗拉强度和延展性的相关性进行了尝试和描述。据观察,与铁素体-贝氏体钢相比,由软铁素体基体组成的单相钢以及在铁素体基体中均匀分布有 5 至 15 pct 波来石的钢具有更好的拉伸法兰性和强度-孔扩展比相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stretch Flangeability of Low Carbon Micro-alloyed Ferrite-Pearlite and Ferrite-Bainite Steel

The application of low carbon micro-alloyed steel sheets in chassis and frame parts of automobiles demands high formability during hot or cold forming operations to produce various intricate shapes. In view of the forming applications, stretch flangeability is considered as one of the most important critical parameters for these steel grades. The stretch-flangeability of micro-alloyed steels, with three different types of microstructure consisting of mainly single-phase ferrite, ferrite-pearlite and ferrite-bainite micro-constituents, is evaluated in this investigation based on hole expansion ratio (HER). The desired microstructures of the low carbon steels micro-alloyed with Nb, Nb-V and Nb-V-Ti steels were obtained at three different coiling temperatures by systematically varying the plant operating process parameters. While Micro-alloying elements largely affect the mechanical strength and ductility of the steel, its direct impact on HER value and fracture behavior are not correlated. The correlation of microstructure with tensile strength and ductility have been attempted for the studied low carbon micro-alloyed steels and described in this paper. It is observed that single-phase steel consisting of soft ferritic matrix as well as steel with 5 to 15 pct pearlite uniformly distributed in ferrite matrix has better stretch flangeability and strength to hole expansion ratio correlation in comparison to ferrite-bainite steel.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Grain Refining and Cracking During Solidification Dendrite Growth in Single-Grain and Cyclic-Twinned Sn–3Ag–0.5Cu Solder Joints Remarkable Cryogenic Strength and Ductility of AISI 904L Superaustenitic Stainless Steel: A Comparative Study Eutectic Solidification Morphologies in Rapidly Solidified Hypereutectic Sn–Ag Solder Alloy The Effect of Silicon Substitution by Boron for the α-Nb5Si3: INSIGHTS into the Constitutive Properties of Nb5Si2B Through Theory and Experimental Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1