双淬火混合钢老化过程中 NiAl 沉淀的现场测量结果

Magnus Hörnqvist Colliander, Steve Ooi, Kristina Lindgren, Timo Müller, Mattias Thuvander
{"title":"双淬火混合钢老化过程中 NiAl 沉淀的现场测量结果","authors":"Magnus Hörnqvist Colliander, Steve Ooi, Kristina Lindgren, Timo Müller, Mattias Thuvander","doi":"10.1007/s11661-024-07536-z","DOIUrl":null,"url":null,"abstract":"<p>The performance of modern dual hardening steels strongly relies on a well-controlled precipitation processes during manufacturing and heat treatment. Here, the precipitation of intermetallic <i>β</i>-NiAl in recently developed dual hardening steels has been investigated during aging using combined high-energy synchrotron X-ray diffraction and small-angle scattering. The effects of heating rate and aging temperature on the precipitation kinetics and lattice mismatch in two alloys (Hybrid 55 and Hybrid 60) were studied. Precipitation starts already during heating, typically in the temperature range 450 °C to 500 °C. The precipitation process is significantly faster at 570 °C compared to 545 °C for both steel grades, and the number density reaches its maximum already within 1 hours during aging at 545 °C and within 15 minutes during aging at 570 °C. The effect of heating rate is limited, but the precipitation during heating increases in Hybrid 60 when slower heating rate is used. This led to slightly higher volume fractions during subsequent aging, but did not affect the particle size. The lattice mismatch between <i>β</i>-NiAl and the matrix initially develops rapidly with time during aging, presumably due to a developing chemistry of the <i>β</i> phase, until a particle size of around 1.5 nm is reached, whereafter it saturates. After saturation, the lattice mismatch is small, but positive, and independent of temperature during cooling.</p>","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Measurements of NiAl Precipitation During Aging of Dual Hardening Hybrid Steels\",\"authors\":\"Magnus Hörnqvist Colliander, Steve Ooi, Kristina Lindgren, Timo Müller, Mattias Thuvander\",\"doi\":\"10.1007/s11661-024-07536-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The performance of modern dual hardening steels strongly relies on a well-controlled precipitation processes during manufacturing and heat treatment. Here, the precipitation of intermetallic <i>β</i>-NiAl in recently developed dual hardening steels has been investigated during aging using combined high-energy synchrotron X-ray diffraction and small-angle scattering. The effects of heating rate and aging temperature on the precipitation kinetics and lattice mismatch in two alloys (Hybrid 55 and Hybrid 60) were studied. Precipitation starts already during heating, typically in the temperature range 450 °C to 500 °C. The precipitation process is significantly faster at 570 °C compared to 545 °C for both steel grades, and the number density reaches its maximum already within 1 hours during aging at 545 °C and within 15 minutes during aging at 570 °C. The effect of heating rate is limited, but the precipitation during heating increases in Hybrid 60 when slower heating rate is used. This led to slightly higher volume fractions during subsequent aging, but did not affect the particle size. The lattice mismatch between <i>β</i>-NiAl and the matrix initially develops rapidly with time during aging, presumably due to a developing chemistry of the <i>β</i> phase, until a particle size of around 1.5 nm is reached, whereafter it saturates. After saturation, the lattice mismatch is small, but positive, and independent of temperature during cooling.</p>\",\"PeriodicalId\":18504,\"journal\":{\"name\":\"Metallurgical and Materials Transactions A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Transactions A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11661-024-07536-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11661-024-07536-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代双硬化钢的性能主要依赖于制造和热处理过程中良好的析出过程。本文采用高能同步辐射 X 射线衍射和小角散射相结合的方法,研究了最近开发的双硬化钢在时效过程中金属间 β-NiAl 的析出。研究了加热速率和时效温度对两种合金(混合 55 和混合 60)的析出动力学和晶格失配的影响。析出在加热过程中就已经开始,通常在 450 °C 至 500 °C 的温度范围内。与 545 °C相比,两种钢材在 570 °C时的析出过程明显更快,在 545 °C的时效过程中,数量密度在 1 小时内达到最大值,在 570 °C的时效过程中,数量密度在 15 分钟内达到最大值。加热速度的影响是有限的,但在混合动力 60 中,当使用较慢的加热速度时,加热过程中的沉淀会增加。这导致在随后的老化过程中体积分数略有增加,但并不影响粒度。在老化过程中,β-NiAl 与基体之间的晶格失配最初会随着时间的推移而迅速发展,这可能是由于 β 相的化学性质在发展,直到达到约 1.5 纳米的粒度,然后达到饱和。饱和后,晶格失配很小,但为正值,且与冷却过程中的温度无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In Situ Measurements of NiAl Precipitation During Aging of Dual Hardening Hybrid Steels

The performance of modern dual hardening steels strongly relies on a well-controlled precipitation processes during manufacturing and heat treatment. Here, the precipitation of intermetallic β-NiAl in recently developed dual hardening steels has been investigated during aging using combined high-energy synchrotron X-ray diffraction and small-angle scattering. The effects of heating rate and aging temperature on the precipitation kinetics and lattice mismatch in two alloys (Hybrid 55 and Hybrid 60) were studied. Precipitation starts already during heating, typically in the temperature range 450 °C to 500 °C. The precipitation process is significantly faster at 570 °C compared to 545 °C for both steel grades, and the number density reaches its maximum already within 1 hours during aging at 545 °C and within 15 minutes during aging at 570 °C. The effect of heating rate is limited, but the precipitation during heating increases in Hybrid 60 when slower heating rate is used. This led to slightly higher volume fractions during subsequent aging, but did not affect the particle size. The lattice mismatch between β-NiAl and the matrix initially develops rapidly with time during aging, presumably due to a developing chemistry of the β phase, until a particle size of around 1.5 nm is reached, whereafter it saturates. After saturation, the lattice mismatch is small, but positive, and independent of temperature during cooling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deconstructing the Retained Austenite Stability: In Situ Observations on the Austenite Stability in One- and Two-Phase Bulk Microstructures During Uniaxial Tensile Tests Modulating Phase Constitution and Copper Microsegregation for FeCoNiCuAl High-Entropy Alloy by Optimized Ultrasonic Solidification Recovery-Assisted Abnormal Grain Evolution of Selective Laser-Melted 316L Stainless Steel at Intermediate Temperatures Role of Microstructure Evolution During Welding on Mechanical Properties and Residual Stresses of the Inconel 718 and Austenitic Stainless Steel 304L Dissimilar Weld Joint Influence of Crystal Orientation on Freckle Formation in Single Crystal Heavy-Plate Castings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1