利用 REncoder 实现时空高效范围查询

Zhuochen Fan, Bowen Ye, Ziwei Wang, Zheng Zhong, Jiarui Guo, Yuhan Wu, Haoyu Li, Tong Yang, Yaofeng Tu, Zirui Liu, Bin Cui
{"title":"利用 REncoder 实现时空高效范围查询","authors":"Zhuochen Fan, Bowen Ye, Ziwei Wang, Zheng Zhong, Jiarui Guo, Yuhan Wu, Haoyu Li, Tong Yang, Yaofeng Tu, Zirui Liu, Bin Cui","doi":"10.1007/s00778-024-00873-w","DOIUrl":null,"url":null,"abstract":"<p>A range filter is a data structure to answer range membership queries. Range queries are common in modern applications, and range filters have gained rising attention for improving the performance of range queries by ruling out empty range queries. However, state-of-the-art range filters, such as SuRF and Rosetta, suffer either high false positive rate or low throughput. In this paper, we propose a novel range filter, called REncoder. It organizes all prefixes of keys into a segment tree, and locally encodes the segment tree into a Bloom filter to accelerate queries. REncoder supports diverse workloads by adaptively choosing how many levels of the segment tree to store. In addition, we also propose a customized blacklist optimization for it to further improve the accuracy of multi-round queries. We theoretically prove that the error of REncoder is bounded and derive the asymptotic space complexity under the bounded error. We conduct extensive experiments on both synthetic datasets and real datasets. The experimental results show that REncoder outperforms all state-of-the-art range filters, and the proposed blacklist optimization can effectively further reduce the false positive rate.\n</p>","PeriodicalId":501532,"journal":{"name":"The VLDB Journal","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enabling space-time efficient range queries with REncoder\",\"authors\":\"Zhuochen Fan, Bowen Ye, Ziwei Wang, Zheng Zhong, Jiarui Guo, Yuhan Wu, Haoyu Li, Tong Yang, Yaofeng Tu, Zirui Liu, Bin Cui\",\"doi\":\"10.1007/s00778-024-00873-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A range filter is a data structure to answer range membership queries. Range queries are common in modern applications, and range filters have gained rising attention for improving the performance of range queries by ruling out empty range queries. However, state-of-the-art range filters, such as SuRF and Rosetta, suffer either high false positive rate or low throughput. In this paper, we propose a novel range filter, called REncoder. It organizes all prefixes of keys into a segment tree, and locally encodes the segment tree into a Bloom filter to accelerate queries. REncoder supports diverse workloads by adaptively choosing how many levels of the segment tree to store. In addition, we also propose a customized blacklist optimization for it to further improve the accuracy of multi-round queries. We theoretically prove that the error of REncoder is bounded and derive the asymptotic space complexity under the bounded error. We conduct extensive experiments on both synthetic datasets and real datasets. The experimental results show that REncoder outperforms all state-of-the-art range filters, and the proposed blacklist optimization can effectively further reduce the false positive rate.\\n</p>\",\"PeriodicalId\":501532,\"journal\":{\"name\":\"The VLDB Journal\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The VLDB Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00778-024-00873-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The VLDB Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00778-024-00873-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

范围过滤器是一种用于回答范围成员查询的数据结构。范围查询在现代应用中很常见,而范围过滤器通过排除空范围查询来提高范围查询的性能,因此受到越来越多的关注。然而,最先进的范围过滤器,如 SuRF 和 Rosetta,要么误报率高,要么吞吐量低。在本文中,我们提出了一种名为 REncoder 的新型范围过滤器。它将密钥的所有前缀组织成一棵段树,并将段树局部编码成 Bloom 过滤器,以加速查询。REncoder 通过自适应地选择存储多少级段树来支持不同的工作负载。此外,我们还为它提出了一种定制的黑名单优化方法,以进一步提高多轮查询的准确性。我们从理论上证明了 REncoder 的误差是有界的,并推导出了有界误差下的渐近空间复杂度。我们在合成数据集和真实数据集上进行了大量实验。实验结果表明,REncoder 的性能优于所有最先进的范围过滤器,而且提出的黑名单优化可以有效地进一步降低误报率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enabling space-time efficient range queries with REncoder

A range filter is a data structure to answer range membership queries. Range queries are common in modern applications, and range filters have gained rising attention for improving the performance of range queries by ruling out empty range queries. However, state-of-the-art range filters, such as SuRF and Rosetta, suffer either high false positive rate or low throughput. In this paper, we propose a novel range filter, called REncoder. It organizes all prefixes of keys into a segment tree, and locally encodes the segment tree into a Bloom filter to accelerate queries. REncoder supports diverse workloads by adaptively choosing how many levels of the segment tree to store. In addition, we also propose a customized blacklist optimization for it to further improve the accuracy of multi-round queries. We theoretically prove that the error of REncoder is bounded and derive the asymptotic space complexity under the bounded error. We conduct extensive experiments on both synthetic datasets and real datasets. The experimental results show that REncoder outperforms all state-of-the-art range filters, and the proposed blacklist optimization can effectively further reduce the false positive rate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A versatile framework for attributed network clustering via K-nearest neighbor augmentation Discovering critical vertices for reinforcement of large-scale bipartite networks DumpyOS: A data-adaptive multi-ary index for scalable data series similarity search Enabling space-time efficient range queries with REncoder AutoCTS++: zero-shot joint neural architecture and hyperparameter search for correlated time series forecasting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1