溶剂管理和 Li+/Mg2+ 共掺实现高效 ni-p NiOx 型过氧化物太阳能电池

IF 3.2 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Journal of Solid State Chemistry Pub Date : 2024-08-05 DOI:10.1016/j.jssc.2024.124948
{"title":"溶剂管理和 Li+/Mg2+ 共掺实现高效 ni-p NiOx 型过氧化物太阳能电池","authors":"","doi":"10.1016/j.jssc.2024.124948","DOIUrl":null,"url":null,"abstract":"<div><p>Spin-coating pre-fabricated NiO<sub>x</sub> nanocrystals using an annealing-free process is a compatible technique for fabricating the hole transport layer in n-i-p structured perovskite solar cells. The solvothermal method, assisted by long-chain fatty acids or amines such as oleic acid and oleylamine, has demonstrated the applicability of fabricating NiO<sub>x</sub> nanoparticles with uniform morphology and size. However, the long-chain fatty acids or amines covering the NiO<sub>x</sub> nanoparticles cannot be removed at low temperature, obstructing the transport of photo-generated holes due to their insulating characteristics. Herein, triphenylphosphine is employed to replace a portion of oleylamine in the solvothermal reaction solution. Experimental results demonstrate that the introduction of triphenylphosphine does not affect the dispersion of the synthesized NiO<sub>x</sub> nanoparticles in toluene. The as-fabricated n-i-p structured device receives an efficiency of 12.63 %. Thereafter, Li<sup>+</sup> doping and Li<sup>+</sup>-Mg<sup>2+</sup> co-doping strategies are used to further enhance the devices' performance. The best-behaved device with Li<sup>+</sup>-Mg<sup>2+</sup> co-doping NiO<sub>x</sub> hole transport layer acquires an efficiency of 16.20 %. This research provides a practical approach for fabricating efficient NiO<sub>x</sub> hole transport materials for n-i-p structured perovskite solar cells.</p></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solvent management and Li+/Mg2+ co-doping enable efficient n-i-p NiOx-based perovskite solar cells\",\"authors\":\"\",\"doi\":\"10.1016/j.jssc.2024.124948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spin-coating pre-fabricated NiO<sub>x</sub> nanocrystals using an annealing-free process is a compatible technique for fabricating the hole transport layer in n-i-p structured perovskite solar cells. The solvothermal method, assisted by long-chain fatty acids or amines such as oleic acid and oleylamine, has demonstrated the applicability of fabricating NiO<sub>x</sub> nanoparticles with uniform morphology and size. However, the long-chain fatty acids or amines covering the NiO<sub>x</sub> nanoparticles cannot be removed at low temperature, obstructing the transport of photo-generated holes due to their insulating characteristics. Herein, triphenylphosphine is employed to replace a portion of oleylamine in the solvothermal reaction solution. Experimental results demonstrate that the introduction of triphenylphosphine does not affect the dispersion of the synthesized NiO<sub>x</sub> nanoparticles in toluene. The as-fabricated n-i-p structured device receives an efficiency of 12.63 %. Thereafter, Li<sup>+</sup> doping and Li<sup>+</sup>-Mg<sup>2+</sup> co-doping strategies are used to further enhance the devices' performance. The best-behaved device with Li<sup>+</sup>-Mg<sup>2+</sup> co-doping NiO<sub>x</sub> hole transport layer acquires an efficiency of 16.20 %. This research provides a practical approach for fabricating efficient NiO<sub>x</sub> hole transport materials for n-i-p structured perovskite solar cells.</p></div>\",\"PeriodicalId\":378,\"journal\":{\"name\":\"Journal of Solid State Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002245962400402X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002245962400402X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

采用无退火工艺对预制的氧化镍纳米晶体进行旋涂,是在 ni-i-p 结构的过氧化物太阳能电池中制造空穴传输层的一种兼容技术。在长链脂肪酸或胺(如油酸和油胺)的辅助下,溶热法已证明适用于制造具有均匀形态和尺寸的氧化镍纳米颗粒。然而,覆盖在氧化镍纳米粒子上的长链脂肪酸或胺在低温下无法去除,其绝缘特性阻碍了光生空穴的传输。在这里,三苯基膦被用来替代溶热反应溶液中的部分油胺。实验结果表明,引入三苯基膦不会影响合成的氧化镍纳米粒子在甲苯中的分散。制备的 ni-i-p 结构器件的效率为 12.63%。此后,掺锂和掺锂镁策略进一步提高了器件的性能。采用锂镁共掺杂氧化镍空穴传输层的最佳器件的效率为 16.20%。这项研究为制造 ni-i-p 结构过氧化物太阳能电池的高效氧化镍空穴传输材料提供了一种实用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solvent management and Li+/Mg2+ co-doping enable efficient n-i-p NiOx-based perovskite solar cells

Spin-coating pre-fabricated NiOx nanocrystals using an annealing-free process is a compatible technique for fabricating the hole transport layer in n-i-p structured perovskite solar cells. The solvothermal method, assisted by long-chain fatty acids or amines such as oleic acid and oleylamine, has demonstrated the applicability of fabricating NiOx nanoparticles with uniform morphology and size. However, the long-chain fatty acids or amines covering the NiOx nanoparticles cannot be removed at low temperature, obstructing the transport of photo-generated holes due to their insulating characteristics. Herein, triphenylphosphine is employed to replace a portion of oleylamine in the solvothermal reaction solution. Experimental results demonstrate that the introduction of triphenylphosphine does not affect the dispersion of the synthesized NiOx nanoparticles in toluene. The as-fabricated n-i-p structured device receives an efficiency of 12.63 %. Thereafter, Li+ doping and Li+-Mg2+ co-doping strategies are used to further enhance the devices' performance. The best-behaved device with Li+-Mg2+ co-doping NiOx hole transport layer acquires an efficiency of 16.20 %. This research provides a practical approach for fabricating efficient NiOx hole transport materials for n-i-p structured perovskite solar cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Solid State Chemistry
Journal of Solid State Chemistry 化学-无机化学与核化学
CiteScore
6.00
自引率
9.10%
发文量
848
审稿时长
25 days
期刊介绍: Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.
期刊最新文献
Structural features of the products based on potassium polytitanate modified in aqueous solutions of ferric sulfate The role of crystallographic orientation on surface properties and ion transport in lithium germanate (Li2GeO3) anodes: A computational approach Stability under electron irradiation of some layered hydrated minerals Synthesis of spherical amorphous metal‒organic frameworks via an in situ hydrolysis strategy for chiral HPLC separation A fluorinated star-shaped covalent organic framework for efficient iodine adsorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1