{"title":"在低温下进行液态渗碳的稳定奥氏体钢的结构和表面特性","authors":"R. A. Savrai, P. A. Skorynina, Yu. M. Kolobylin","doi":"10.1134/s0031918x24600350","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The paper studies the structure, chemical and phase composition, microhardness, and surface roughness of heat-resistant chromium–nickel (in wt %: 24.27 Cr and 18.81 Ni) austenitic steel subjected to liquid carburizing at a temperature of 780°С. It is established that the microstructure of the carburized layer predominately consists of carbon-rich austenite (γ-phase), chromium carbide Cr<sub>7</sub>C<sub>3</sub>, and cementite Fe<sub>3</sub>C. It is revealed that carbides precipitate both at boundaries and inside the austenite grains; as we move away from the steel surface, the amount and dispersity of intragranular carbides decreases. It is also established that liquid carburizing leads to an increase in the microhardness of steel surface from 200 to 590 HV0.0025. The total depth of hardening is approximately 200 μm, and the hardened layer is gradient-wise. The surface of the carburized steel is characterized by large surface roughness (<i>Ra</i> = 2.40 μm and <i>Rz</i> = 17.60 μm), compared to the electropolished surface of specimens before carburizing (<i>Ra</i> = 0.17 μm and <i>Rz</i> = 1.80 μm), which is caused by several factors, including, e.g., oxidation of the surface.</p>","PeriodicalId":20180,"journal":{"name":"Physics of Metals and Metallography","volume":"11 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure and Surface Properties of Stable Austenitic Steel Subjected to Liquid Carburizing at Lowered Temperature\",\"authors\":\"R. A. Savrai, P. A. Skorynina, Yu. M. Kolobylin\",\"doi\":\"10.1134/s0031918x24600350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The paper studies the structure, chemical and phase composition, microhardness, and surface roughness of heat-resistant chromium–nickel (in wt %: 24.27 Cr and 18.81 Ni) austenitic steel subjected to liquid carburizing at a temperature of 780°С. It is established that the microstructure of the carburized layer predominately consists of carbon-rich austenite (γ-phase), chromium carbide Cr<sub>7</sub>C<sub>3</sub>, and cementite Fe<sub>3</sub>C. It is revealed that carbides precipitate both at boundaries and inside the austenite grains; as we move away from the steel surface, the amount and dispersity of intragranular carbides decreases. It is also established that liquid carburizing leads to an increase in the microhardness of steel surface from 200 to 590 HV0.0025. The total depth of hardening is approximately 200 μm, and the hardened layer is gradient-wise. The surface of the carburized steel is characterized by large surface roughness (<i>Ra</i> = 2.40 μm and <i>Rz</i> = 17.60 μm), compared to the electropolished surface of specimens before carburizing (<i>Ra</i> = 0.17 μm and <i>Rz</i> = 1.80 μm), which is caused by several factors, including, e.g., oxidation of the surface.</p>\",\"PeriodicalId\":20180,\"journal\":{\"name\":\"Physics of Metals and Metallography\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Metals and Metallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1134/s0031918x24600350\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Metals and Metallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1134/s0031918x24600350","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Structure and Surface Properties of Stable Austenitic Steel Subjected to Liquid Carburizing at Lowered Temperature
Abstract
The paper studies the structure, chemical and phase composition, microhardness, and surface roughness of heat-resistant chromium–nickel (in wt %: 24.27 Cr and 18.81 Ni) austenitic steel subjected to liquid carburizing at a temperature of 780°С. It is established that the microstructure of the carburized layer predominately consists of carbon-rich austenite (γ-phase), chromium carbide Cr7C3, and cementite Fe3C. It is revealed that carbides precipitate both at boundaries and inside the austenite grains; as we move away from the steel surface, the amount and dispersity of intragranular carbides decreases. It is also established that liquid carburizing leads to an increase in the microhardness of steel surface from 200 to 590 HV0.0025. The total depth of hardening is approximately 200 μm, and the hardened layer is gradient-wise. The surface of the carburized steel is characterized by large surface roughness (Ra = 2.40 μm and Rz = 17.60 μm), compared to the electropolished surface of specimens before carburizing (Ra = 0.17 μm and Rz = 1.80 μm), which is caused by several factors, including, e.g., oxidation of the surface.
期刊介绍:
The Physics of Metals and Metallography (Fizika metallov i metallovedenie) was founded in 1955 by the USSR Academy of Sciences. Its scientific profile involves the theory of metals and metal alloys, their electrical and magnetic properties, as well as their structure, phase transformations, and principal mechanical properties. The journal also publishes scientific reviews and papers written by experts involved in fundamental, application, and technological studies. The annual volume of publications amounts to some 250 papers submitted from 100 leading national scientific institutions.