Pinaki Ranadive, Faiz Khan, Jessica O. Winter and Nicholas Brunelli
{"title":"用于全连续合成芯@壳 Au@Ag 纳米复合材料的双喷射混合反应器","authors":"Pinaki Ranadive, Faiz Khan, Jessica O. Winter and Nicholas Brunelli","doi":"10.1039/D3RE00417A","DOIUrl":null,"url":null,"abstract":"<p >The wide-scale production of nanomaterials would benefit from scalable synthetic methods. One class of promising nanomaterials consists of a core@shell structure in which one type of material is used for the core and a second material is grown on the surface to produce a shell. Although these materials are commonly realized in batch, core@shell structures have not yet been widely translated to scalable manufacturing processes. In this work, we investigate the continuous flow synthesis of Au@Ag core@shell nanomaterials using sequential jet-mixing reactors (JMRs). Connecting the two JMRs overcomes challenges with particle instability when the processes are separated. Using synthesis conditions typical for batch methods in the JMR resulted in a non-uniform particle size distribution. Through investigating the synthesis conditions of the Au core, the key parameters affecting the synthesis of well-defined nanoparticles are identified as the concentration of the reducing agent and the inclusion of bovine-serum albumin (BSA) to limit particle aggregation. The concentration of the reducing agent is adjusted to achieve a high yield of Au NPs. The adjusted concentration enabled continuous synthesis of Au@Ag core@shell nanoparticles using BSA as the stabilizing ligand in a dual jet mixing reactor system. Overall, this work provides insights on integrating sequential processes for the synthesis of core@shell nanomaterials.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 11","pages":" 2915-2924"},"PeriodicalIF":3.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/re/d3re00417a?page=search","citationCount":"0","resultStr":"{\"title\":\"Dual jet-mixing reactor for fully continuous synthesis of core@shell Au@Ag nanocomposites†\",\"authors\":\"Pinaki Ranadive, Faiz Khan, Jessica O. Winter and Nicholas Brunelli\",\"doi\":\"10.1039/D3RE00417A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The wide-scale production of nanomaterials would benefit from scalable synthetic methods. One class of promising nanomaterials consists of a core@shell structure in which one type of material is used for the core and a second material is grown on the surface to produce a shell. Although these materials are commonly realized in batch, core@shell structures have not yet been widely translated to scalable manufacturing processes. In this work, we investigate the continuous flow synthesis of Au@Ag core@shell nanomaterials using sequential jet-mixing reactors (JMRs). Connecting the two JMRs overcomes challenges with particle instability when the processes are separated. Using synthesis conditions typical for batch methods in the JMR resulted in a non-uniform particle size distribution. Through investigating the synthesis conditions of the Au core, the key parameters affecting the synthesis of well-defined nanoparticles are identified as the concentration of the reducing agent and the inclusion of bovine-serum albumin (BSA) to limit particle aggregation. The concentration of the reducing agent is adjusted to achieve a high yield of Au NPs. The adjusted concentration enabled continuous synthesis of Au@Ag core@shell nanoparticles using BSA as the stabilizing ligand in a dual jet mixing reactor system. Overall, this work provides insights on integrating sequential processes for the synthesis of core@shell nanomaterials.</p>\",\"PeriodicalId\":101,\"journal\":{\"name\":\"Reaction Chemistry & Engineering\",\"volume\":\" 11\",\"pages\":\" 2915-2924\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/re/d3re00417a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/re/d3re00417a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/re/d3re00417a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dual jet-mixing reactor for fully continuous synthesis of core@shell Au@Ag nanocomposites†
The wide-scale production of nanomaterials would benefit from scalable synthetic methods. One class of promising nanomaterials consists of a core@shell structure in which one type of material is used for the core and a second material is grown on the surface to produce a shell. Although these materials are commonly realized in batch, core@shell structures have not yet been widely translated to scalable manufacturing processes. In this work, we investigate the continuous flow synthesis of Au@Ag core@shell nanomaterials using sequential jet-mixing reactors (JMRs). Connecting the two JMRs overcomes challenges with particle instability when the processes are separated. Using synthesis conditions typical for batch methods in the JMR resulted in a non-uniform particle size distribution. Through investigating the synthesis conditions of the Au core, the key parameters affecting the synthesis of well-defined nanoparticles are identified as the concentration of the reducing agent and the inclusion of bovine-serum albumin (BSA) to limit particle aggregation. The concentration of the reducing agent is adjusted to achieve a high yield of Au NPs. The adjusted concentration enabled continuous synthesis of Au@Ag core@shell nanoparticles using BSA as the stabilizing ligand in a dual jet mixing reactor system. Overall, this work provides insights on integrating sequential processes for the synthesis of core@shell nanomaterials.
期刊介绍:
Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society.
From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.