通过优化栅极布局降低基于外延-异质结构的自旋量子比特器件的变异性

IF 3.8 2区 物理与天体物理 Q2 PHYSICS, APPLIED Physical Review Applied Pub Date : 2024-08-09 DOI:10.1103/physrevapplied.22.024030
Biel Martinez, Silvano de Franceschi, Yann-Michel Niquet
{"title":"通过优化栅极布局降低基于外延-异质结构的自旋量子比特器件的变异性","authors":"Biel Martinez, Silvano de Franceschi, Yann-Michel Niquet","doi":"10.1103/physrevapplied.22.024030","DOIUrl":null,"url":null,"abstract":"The scalability of spin-qubit devices is conditioned by qubit-to-qubit variability. Disorder in the host materials indeed affects the wave functions of the confined carriers, which leads to variations in their charge and spin properties. Charge disorder in the amorphous oxides is particularly detrimental owing to its long-range influence. Here we analyze the effects of charge traps at the semiconductor-oxide interface, which are generally believed to play a dominant role in variability. We consider multiple random distributions of these interface traps and numerically calculate their impact on the chemical potentials, detuning, and tunnel coupling of two adjacent quantum dots in <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Si</mi><mi>Ge</mi></mrow></math> heterostructure. Our results highlight the beneficial screening effect of the metal gates. The surface of the heterostructure shall, therefore, be covered as much as possible by the gates in order to limit variability. We propose an alternative layout with tip-shaped gates that maximizes the coverage of the semiconductor-oxide interface and outperforms the usual planar layout in some regimes. This highlights the importance of design in the management of device-to-device variability.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating variability in epitaxial-heterostructure-based spin-qubit devices by optimizing gate layout\",\"authors\":\"Biel Martinez, Silvano de Franceschi, Yann-Michel Niquet\",\"doi\":\"10.1103/physrevapplied.22.024030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scalability of spin-qubit devices is conditioned by qubit-to-qubit variability. Disorder in the host materials indeed affects the wave functions of the confined carriers, which leads to variations in their charge and spin properties. Charge disorder in the amorphous oxides is particularly detrimental owing to its long-range influence. Here we analyze the effects of charge traps at the semiconductor-oxide interface, which are generally believed to play a dominant role in variability. We consider multiple random distributions of these interface traps and numerically calculate their impact on the chemical potentials, detuning, and tunnel coupling of two adjacent quantum dots in <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Si</mi><mi>Ge</mi></mrow></math> heterostructure. Our results highlight the beneficial screening effect of the metal gates. The surface of the heterostructure shall, therefore, be covered as much as possible by the gates in order to limit variability. We propose an alternative layout with tip-shaped gates that maximizes the coverage of the semiconductor-oxide interface and outperforms the usual planar layout in some regimes. This highlights the importance of design in the management of device-to-device variability.\",\"PeriodicalId\":20109,\"journal\":{\"name\":\"Physical Review Applied\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Applied\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.22.024030\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.024030","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

自旋量子比特器件的可扩展性受制于量子比特与量子比特之间的变化。宿主材料中的无序确实会影响约束载流子的波函数,从而导致其电荷和自旋特性的变化。非晶氧化物中的电荷无序因其长程影响而尤其有害。在此,我们分析了半导体-氧化物界面电荷阱的影响,一般认为电荷阱在变化中起主导作用。我们考虑了这些界面陷阱的多种随机分布,并数值计算了它们对 SiGe 异质结构中相邻两个量子点的化学势、失谐和隧道耦合的影响。我们的结果凸显了金属栅极的有利屏蔽效应。因此,异质结构的表面应尽可能被栅极覆盖,以限制可变性。我们提出了一种具有尖端形状栅极的替代布局,它能最大限度地覆盖半导体-氧化物界面,并在某些情况下优于通常的平面布局。这凸显了设计在管理器件间变异性方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mitigating variability in epitaxial-heterostructure-based spin-qubit devices by optimizing gate layout
The scalability of spin-qubit devices is conditioned by qubit-to-qubit variability. Disorder in the host materials indeed affects the wave functions of the confined carriers, which leads to variations in their charge and spin properties. Charge disorder in the amorphous oxides is particularly detrimental owing to its long-range influence. Here we analyze the effects of charge traps at the semiconductor-oxide interface, which are generally believed to play a dominant role in variability. We consider multiple random distributions of these interface traps and numerically calculate their impact on the chemical potentials, detuning, and tunnel coupling of two adjacent quantum dots in SiGe heterostructure. Our results highlight the beneficial screening effect of the metal gates. The surface of the heterostructure shall, therefore, be covered as much as possible by the gates in order to limit variability. We propose an alternative layout with tip-shaped gates that maximizes the coverage of the semiconductor-oxide interface and outperforms the usual planar layout in some regimes. This highlights the importance of design in the management of device-to-device variability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Applied
Physical Review Applied PHYSICS, APPLIED-
CiteScore
7.80
自引率
8.70%
发文量
760
审稿时长
2.5 months
期刊介绍: Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry. PRApplied focuses on topics including: Biophysics, bioelectronics, and biomedical engineering, Device physics, Electronics, Technology to harvest, store, and transmit energy, focusing on renewable energy technologies, Geophysics and space science, Industrial physics, Magnetism and spintronics, Metamaterials, Microfluidics, Nonlinear dynamics and pattern formation in natural or manufactured systems, Nanoscience and nanotechnology, Optics, optoelectronics, photonics, and photonic devices, Quantum information processing, both algorithms and hardware, Soft matter physics, including granular and complex fluids and active matter.
期刊最新文献
Nonreciprocity of surface acoustic waves coupled to spin waves in a ferromagnetic bilayer with noncollinear layer magnetizations Experimental demonstration of deep-learning-enabled adaptive optics Power-stabilized 3-W blue laser locked to the 420-nm transition in rubidium Control of threshold voltages in Si/Si0.7Ge0.3 quantum devices via optical illumination Static quantum dot on a large potential hilltop for generating and analyzing hot electrons in the quantum Hall regime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1