{"title":"基于对称的量子电路映射","authors":"Di Yu, Kun Fang","doi":"10.1103/physrevapplied.22.024029","DOIUrl":null,"url":null,"abstract":"Quantum circuit mapping is a crucial process in the quantum circuit compilation pipeline, facilitating the transformation of a logical quantum circuit into a list of instructions directly executable on a target quantum system. Recent research has introduced a postcompilation step known as remapping, which seeks to reconfigure the initial circuit mapping to mitigate quantum circuit errors arising from system variability. As quantum processors continue to scale in size, the efficiency of quantum circuit mapping and the overall compilation process has become of paramount importance. In this work, we introduce a quantum circuit remapping algorithm that leverages the intrinsic symmetries in quantum processors, making it well suited for large-scale quantum systems. This algorithm identifies all topologically equivalent circuit mappings by constraining the search space using symmetries and accelerates the scoring of each mapping using vector computation. Notably, this symmetry-based-circuit-remapping algorithm exhibits linear scaling with the number of qubits in the target quantum hardware and is proven to be optimal in terms of its time complexity. Moreover, we conduct a comparative analysis against existing methods in the literature, demonstrating the superior performance of our symmetry-based method on state-of-the-art quantum hardware architectures and highlighting the practical utility of our algorithm, particularly for large-scale quantum computing.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"3 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry-based quantum circuit mapping\",\"authors\":\"Di Yu, Kun Fang\",\"doi\":\"10.1103/physrevapplied.22.024029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum circuit mapping is a crucial process in the quantum circuit compilation pipeline, facilitating the transformation of a logical quantum circuit into a list of instructions directly executable on a target quantum system. Recent research has introduced a postcompilation step known as remapping, which seeks to reconfigure the initial circuit mapping to mitigate quantum circuit errors arising from system variability. As quantum processors continue to scale in size, the efficiency of quantum circuit mapping and the overall compilation process has become of paramount importance. In this work, we introduce a quantum circuit remapping algorithm that leverages the intrinsic symmetries in quantum processors, making it well suited for large-scale quantum systems. This algorithm identifies all topologically equivalent circuit mappings by constraining the search space using symmetries and accelerates the scoring of each mapping using vector computation. Notably, this symmetry-based-circuit-remapping algorithm exhibits linear scaling with the number of qubits in the target quantum hardware and is proven to be optimal in terms of its time complexity. Moreover, we conduct a comparative analysis against existing methods in the literature, demonstrating the superior performance of our symmetry-based method on state-of-the-art quantum hardware architectures and highlighting the practical utility of our algorithm, particularly for large-scale quantum computing.\",\"PeriodicalId\":20109,\"journal\":{\"name\":\"Physical Review Applied\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Applied\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.22.024029\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.024029","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Quantum circuit mapping is a crucial process in the quantum circuit compilation pipeline, facilitating the transformation of a logical quantum circuit into a list of instructions directly executable on a target quantum system. Recent research has introduced a postcompilation step known as remapping, which seeks to reconfigure the initial circuit mapping to mitigate quantum circuit errors arising from system variability. As quantum processors continue to scale in size, the efficiency of quantum circuit mapping and the overall compilation process has become of paramount importance. In this work, we introduce a quantum circuit remapping algorithm that leverages the intrinsic symmetries in quantum processors, making it well suited for large-scale quantum systems. This algorithm identifies all topologically equivalent circuit mappings by constraining the search space using symmetries and accelerates the scoring of each mapping using vector computation. Notably, this symmetry-based-circuit-remapping algorithm exhibits linear scaling with the number of qubits in the target quantum hardware and is proven to be optimal in terms of its time complexity. Moreover, we conduct a comparative analysis against existing methods in the literature, demonstrating the superior performance of our symmetry-based method on state-of-the-art quantum hardware architectures and highlighting the practical utility of our algorithm, particularly for large-scale quantum computing.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.