用于减弱震荡数据振铃效应的深度 CNN 模型

Zhuang Jia, Wenkai Lu
{"title":"用于减弱震荡数据振铃效应的深度 CNN 模型","authors":"Zhuang Jia, Wenkai Lu","doi":"arxiv-2408.01831","DOIUrl":null,"url":null,"abstract":"In the field of exploration geophysics, seismic vibrator is one of the widely\nused seismic sources to acquire seismic data, which is usually named vibroseis.\n\"Ringing effect\" is a common problem in vibroseis data processing due to the\nlimited frequency bandwidth of the vibrator, which degrades the performance of\nfirst-break picking. In this paper, we proposed a novel deringing model for\nvibroseis data using deep convolutional neural network (CNN). In this model we\nuse end-to-end training strategy to obtain the deringed data directly, and skip\nconnections to improve model training process and preserve the details of\nvibroseis data. For real vibroseis deringing task we synthesize training data\nand corresponding labels from real vibroseis data and utilize them to train the\ndeep CNN model. Experiments are conducted both on synthetic data and real\nvibroseis data. The experiment results show that deep CNN model can attenuate\nthe ringing effect effectively and expand the bandwidth of vibroseis data. The\nSTA/LTA ratio method for first-break picking also shows improvement on deringed\nvibroseis data using deep CNN model.","PeriodicalId":501270,"journal":{"name":"arXiv - PHYS - Geophysics","volume":"186 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep CNN Model for Ringing Effect Attenuation of Vibroseis Data\",\"authors\":\"Zhuang Jia, Wenkai Lu\",\"doi\":\"arxiv-2408.01831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of exploration geophysics, seismic vibrator is one of the widely\\nused seismic sources to acquire seismic data, which is usually named vibroseis.\\n\\\"Ringing effect\\\" is a common problem in vibroseis data processing due to the\\nlimited frequency bandwidth of the vibrator, which degrades the performance of\\nfirst-break picking. In this paper, we proposed a novel deringing model for\\nvibroseis data using deep convolutional neural network (CNN). In this model we\\nuse end-to-end training strategy to obtain the deringed data directly, and skip\\nconnections to improve model training process and preserve the details of\\nvibroseis data. For real vibroseis deringing task we synthesize training data\\nand corresponding labels from real vibroseis data and utilize them to train the\\ndeep CNN model. Experiments are conducted both on synthetic data and real\\nvibroseis data. The experiment results show that deep CNN model can attenuate\\nthe ringing effect effectively and expand the bandwidth of vibroseis data. The\\nSTA/LTA ratio method for first-break picking also shows improvement on deringed\\nvibroseis data using deep CNN model.\",\"PeriodicalId\":501270,\"journal\":{\"name\":\"arXiv - PHYS - Geophysics\",\"volume\":\"186 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在勘探地球物理领域,地震震源是获取地震数据的广泛使用的震源之一,通常被命名为震源。由于震源的频率带宽有限,"振铃效应 "是震源数据处理中的一个常见问题,会降低初至拾取的性能。在本文中,我们利用深度卷积神经网络(CNN)为振动采样数据提出了一种新的振铃模型。在该模型中,我们采用端到端训练策略直接获取掺杂数据,并跳过连接以改进模型训练过程,保留振动信号数据的细节。对于真实的振动信号剔除任务,我们从真实的振动信号数据中合成训练数据和相应的标签,并利用它们来训练深度 CNN 模型。实验同时在合成数据和真实 vibroseis 数据上进行。实验结果表明,深度 CNN 模型可以有效地减弱振铃效应,并扩大振动信号数据的带宽。利用深度 CNN 模型,STA/LTA 比值法进行初至拾取也显示出对经掺杂的振动信号数据的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Deep CNN Model for Ringing Effect Attenuation of Vibroseis Data
In the field of exploration geophysics, seismic vibrator is one of the widely used seismic sources to acquire seismic data, which is usually named vibroseis. "Ringing effect" is a common problem in vibroseis data processing due to the limited frequency bandwidth of the vibrator, which degrades the performance of first-break picking. In this paper, we proposed a novel deringing model for vibroseis data using deep convolutional neural network (CNN). In this model we use end-to-end training strategy to obtain the deringed data directly, and skip connections to improve model training process and preserve the details of vibroseis data. For real vibroseis deringing task we synthesize training data and corresponding labels from real vibroseis data and utilize them to train the deep CNN model. Experiments are conducted both on synthetic data and real vibroseis data. The experiment results show that deep CNN model can attenuate the ringing effect effectively and expand the bandwidth of vibroseis data. The STA/LTA ratio method for first-break picking also shows improvement on deringed vibroseis data using deep CNN model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Groundwater dynamics beneath a marine ice sheet Generalized failure law for landslides, rockbursts, glacier breakoffs, and volcanic eruptions DiffESM: Conditional Emulation of Temperature and Precipitation in Earth System Models with 3D Diffusion Models The Arpu Kuilpu Meteorite: In-depth characterization of an H5 chondrite delivered from a Jupiter Family Comet orbit The Sun's Birth Environment: Context for Meteoritics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1