C.K. Safeer, Paul S. Keatley, Witold Skowroński, Jakub Mojsiejuk, Kay Yakushiji, Akio Fukushima, Shinji Yuasa, Daniel Bedau, Fèlix Casanova, Luis E. Hueso, Robert J. Hicken, Daniele Pinna, Gerrit van der Laan, Thorsten Hesjedal
{"title":"跨磁性隧道结的位移电流驱动的磁化动力学","authors":"C.K. Safeer, Paul S. Keatley, Witold Skowroński, Jakub Mojsiejuk, Kay Yakushiji, Akio Fukushima, Shinji Yuasa, Daniel Bedau, Fèlix Casanova, Luis E. Hueso, Robert J. Hicken, Daniele Pinna, Gerrit van der Laan, Thorsten Hesjedal","doi":"10.1103/physrevapplied.22.024019","DOIUrl":null,"url":null,"abstract":"Understanding the high-frequency transport characteristics of magnetic tunnel junctions (MTJs) is crucial for the development of fast-operating spintronics memories and radio frequency devices. Here, we present the study of a frequency-dependent capacitive current effect in <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>Co</mi><mi>Fe</mi><mi mathvariant=\"normal\">B</mi></mrow><mo>/</mo><mrow><mi>Mg</mi><mi mathvariant=\"normal\">O</mi></mrow></math>-based MTJs and its influence on magnetization dynamics using a time-resolved magneto-optical Kerr effect technique. In our device, operating at gigahertz frequencies, we find a large displacement current of the order of mA, which does not break the tunnel barrier of the MTJ. Importantly, this current generates an Oersted field and spin-orbit torque, inducing magnetization dynamics. Our discovery holds promise for building robust MTJ devices operating under high current conditions, also highlighting the significance of capacitive impedance in high-frequency magnetotransport techniques.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"2 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetization dynamics driven by displacement currents across a magnetic tunnel junction\",\"authors\":\"C.K. Safeer, Paul S. Keatley, Witold Skowroński, Jakub Mojsiejuk, Kay Yakushiji, Akio Fukushima, Shinji Yuasa, Daniel Bedau, Fèlix Casanova, Luis E. Hueso, Robert J. Hicken, Daniele Pinna, Gerrit van der Laan, Thorsten Hesjedal\",\"doi\":\"10.1103/physrevapplied.22.024019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the high-frequency transport characteristics of magnetic tunnel junctions (MTJs) is crucial for the development of fast-operating spintronics memories and radio frequency devices. Here, we present the study of a frequency-dependent capacitive current effect in <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>Co</mi><mi>Fe</mi><mi mathvariant=\\\"normal\\\">B</mi></mrow><mo>/</mo><mrow><mi>Mg</mi><mi mathvariant=\\\"normal\\\">O</mi></mrow></math>-based MTJs and its influence on magnetization dynamics using a time-resolved magneto-optical Kerr effect technique. In our device, operating at gigahertz frequencies, we find a large displacement current of the order of mA, which does not break the tunnel barrier of the MTJ. Importantly, this current generates an Oersted field and spin-orbit torque, inducing magnetization dynamics. Our discovery holds promise for building robust MTJ devices operating under high current conditions, also highlighting the significance of capacitive impedance in high-frequency magnetotransport techniques.\",\"PeriodicalId\":20109,\"journal\":{\"name\":\"Physical Review Applied\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Applied\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.22.024019\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.024019","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Magnetization dynamics driven by displacement currents across a magnetic tunnel junction
Understanding the high-frequency transport characteristics of magnetic tunnel junctions (MTJs) is crucial for the development of fast-operating spintronics memories and radio frequency devices. Here, we present the study of a frequency-dependent capacitive current effect in -based MTJs and its influence on magnetization dynamics using a time-resolved magneto-optical Kerr effect technique. In our device, operating at gigahertz frequencies, we find a large displacement current of the order of mA, which does not break the tunnel barrier of the MTJ. Importantly, this current generates an Oersted field and spin-orbit torque, inducing magnetization dynamics. Our discovery holds promise for building robust MTJ devices operating under high current conditions, also highlighting the significance of capacitive impedance in high-frequency magnetotransport techniques.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.