Edward Butler-Caddle, K.D.G. Imalka Jayawardena, Anjana Wijesekara, Rebecca L. Milot, James Lloyd-Hughes
{"title":"利用超快光谱和数值模拟区分过氧化物/传输层界面上的载流子传输和界面重组","authors":"Edward Butler-Caddle, K.D.G. Imalka Jayawardena, Anjana Wijesekara, Rebecca L. Milot, James Lloyd-Hughes","doi":"10.1103/physrevapplied.22.024013","DOIUrl":null,"url":null,"abstract":"In perovskite solar cells, photovoltaic action is created by charge transport layers (CTLs) either side of the light-absorbing metal halide perovskite semiconductor. Hence, the rates for desirable charge extraction and unwanted interfacial recombination at the perovskite-CTL interfaces play a critical role for device efficiency. Here, the electrical properties of perovskite-CTL bilayer heterostructures are obtained using ultrafast terahertz and optical studies of the charge carrier dynamics after pulsed photoexcitation, combined with a physical model of charge carrier transport that includes the prominent Coulombic forces that arise after selective charge extraction into a CTL, and cross-interfacial recombination. The charge extraction velocity at the interface and the ambipolar diffusion coefficient within the perovskite are determined from the experimental decay profiles for heterostructures with three of the highest-performing CTLs, namely <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mtext>C</mtext><mn>60</mn></msub></math>, PCBM and Spiro-OMeTAD. Definitive targets for the further improvement of devices are deduced: fullerenes deliver fast electron extraction, but suffer from a large rate constant for cross-interface recombination or hole extraction. Conversely, Spiro-OMeTAD exhibits slow hole extraction but does not increase the perovskite’s surface recombination rate, likely contributing to its success in solar cell devices.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"14 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distinguishing carrier transport and interfacial recombination at perovskite/transport-layer interfaces using ultrafast spectroscopy and numerical simulation\",\"authors\":\"Edward Butler-Caddle, K.D.G. Imalka Jayawardena, Anjana Wijesekara, Rebecca L. Milot, James Lloyd-Hughes\",\"doi\":\"10.1103/physrevapplied.22.024013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In perovskite solar cells, photovoltaic action is created by charge transport layers (CTLs) either side of the light-absorbing metal halide perovskite semiconductor. Hence, the rates for desirable charge extraction and unwanted interfacial recombination at the perovskite-CTL interfaces play a critical role for device efficiency. Here, the electrical properties of perovskite-CTL bilayer heterostructures are obtained using ultrafast terahertz and optical studies of the charge carrier dynamics after pulsed photoexcitation, combined with a physical model of charge carrier transport that includes the prominent Coulombic forces that arise after selective charge extraction into a CTL, and cross-interfacial recombination. The charge extraction velocity at the interface and the ambipolar diffusion coefficient within the perovskite are determined from the experimental decay profiles for heterostructures with three of the highest-performing CTLs, namely <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub><mtext>C</mtext><mn>60</mn></msub></math>, PCBM and Spiro-OMeTAD. Definitive targets for the further improvement of devices are deduced: fullerenes deliver fast electron extraction, but suffer from a large rate constant for cross-interface recombination or hole extraction. Conversely, Spiro-OMeTAD exhibits slow hole extraction but does not increase the perovskite’s surface recombination rate, likely contributing to its success in solar cell devices.\",\"PeriodicalId\":20109,\"journal\":{\"name\":\"Physical Review Applied\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Applied\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.22.024013\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.024013","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Distinguishing carrier transport and interfacial recombination at perovskite/transport-layer interfaces using ultrafast spectroscopy and numerical simulation
In perovskite solar cells, photovoltaic action is created by charge transport layers (CTLs) either side of the light-absorbing metal halide perovskite semiconductor. Hence, the rates for desirable charge extraction and unwanted interfacial recombination at the perovskite-CTL interfaces play a critical role for device efficiency. Here, the electrical properties of perovskite-CTL bilayer heterostructures are obtained using ultrafast terahertz and optical studies of the charge carrier dynamics after pulsed photoexcitation, combined with a physical model of charge carrier transport that includes the prominent Coulombic forces that arise after selective charge extraction into a CTL, and cross-interfacial recombination. The charge extraction velocity at the interface and the ambipolar diffusion coefficient within the perovskite are determined from the experimental decay profiles for heterostructures with three of the highest-performing CTLs, namely , PCBM and Spiro-OMeTAD. Definitive targets for the further improvement of devices are deduced: fullerenes deliver fast electron extraction, but suffer from a large rate constant for cross-interface recombination or hole extraction. Conversely, Spiro-OMeTAD exhibits slow hole extraction but does not increase the perovskite’s surface recombination rate, likely contributing to its success in solar cell devices.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.