Ali Kheyroddin, Mehran Akhavan Salmassi, Mahdi Kioumarsi
{"title":"端部剪力墙对带有直升机停机坪的钢筋混凝土高层建筑行为的影响","authors":"Ali Kheyroddin, Mehran Akhavan Salmassi, Mahdi Kioumarsi","doi":"10.1007/s40996-024-01574-8","DOIUrl":null,"url":null,"abstract":"<p>Nowadays, the helipad is considered on the roofs of tall buildings to accommodate air taxi services or evacuation in case of a major fire outbreak. On the other hand, lateral load systems play an essential role in tall buildings. In tall buildings, the reinforced concrete end shear walls connect the ends of two reinforced concrete shear walls in all stories to reduce tensions in the end wings. Accordingly, this research compared two 30-story models of reinforced concrete buildings with helipads on top with and without end shear walls. Helipads in two tall buildings should consider both the essential area for touchdown and liftoff and the area where a helicopter begins to move into forward flight during takeoff final approach and takeoff or hovers or lands (approach maneuver). The mentioned tall buildings were subjected to helipad load. Based on the results, the first period and maximum drift story declined by 52% and 47% in 30-story by end shear walls, respectively. In addition, statistical analysis was used for further investigation. The related results showed that skewness and kurtosis coefficients were reduced by 18% and 70% in the 30-story building with an end shear wall and a helipad. The consequences presented suitable performance end shear walls in the tall reinforced concrete building with end shear walls and helipads for personal transportation.</p>","PeriodicalId":14550,"journal":{"name":"Iranian Journal of Science and Technology, Transactions of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impact of End Shear Walls on the Behavior of Reinforced Concrete Tall Buildings with Helipad for Personal Transportation\",\"authors\":\"Ali Kheyroddin, Mehran Akhavan Salmassi, Mahdi Kioumarsi\",\"doi\":\"10.1007/s40996-024-01574-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nowadays, the helipad is considered on the roofs of tall buildings to accommodate air taxi services or evacuation in case of a major fire outbreak. On the other hand, lateral load systems play an essential role in tall buildings. In tall buildings, the reinforced concrete end shear walls connect the ends of two reinforced concrete shear walls in all stories to reduce tensions in the end wings. Accordingly, this research compared two 30-story models of reinforced concrete buildings with helipads on top with and without end shear walls. Helipads in two tall buildings should consider both the essential area for touchdown and liftoff and the area where a helicopter begins to move into forward flight during takeoff final approach and takeoff or hovers or lands (approach maneuver). The mentioned tall buildings were subjected to helipad load. Based on the results, the first period and maximum drift story declined by 52% and 47% in 30-story by end shear walls, respectively. In addition, statistical analysis was used for further investigation. The related results showed that skewness and kurtosis coefficients were reduced by 18% and 70% in the 30-story building with an end shear wall and a helipad. The consequences presented suitable performance end shear walls in the tall reinforced concrete building with end shear walls and helipads for personal transportation.</p>\",\"PeriodicalId\":14550,\"journal\":{\"name\":\"Iranian Journal of Science and Technology, Transactions of Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology, Transactions of Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40996-024-01574-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40996-024-01574-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
The Impact of End Shear Walls on the Behavior of Reinforced Concrete Tall Buildings with Helipad for Personal Transportation
Nowadays, the helipad is considered on the roofs of tall buildings to accommodate air taxi services or evacuation in case of a major fire outbreak. On the other hand, lateral load systems play an essential role in tall buildings. In tall buildings, the reinforced concrete end shear walls connect the ends of two reinforced concrete shear walls in all stories to reduce tensions in the end wings. Accordingly, this research compared two 30-story models of reinforced concrete buildings with helipads on top with and without end shear walls. Helipads in two tall buildings should consider both the essential area for touchdown and liftoff and the area where a helicopter begins to move into forward flight during takeoff final approach and takeoff or hovers or lands (approach maneuver). The mentioned tall buildings were subjected to helipad load. Based on the results, the first period and maximum drift story declined by 52% and 47% in 30-story by end shear walls, respectively. In addition, statistical analysis was used for further investigation. The related results showed that skewness and kurtosis coefficients were reduced by 18% and 70% in the 30-story building with an end shear wall and a helipad. The consequences presented suitable performance end shear walls in the tall reinforced concrete building with end shear walls and helipads for personal transportation.
期刊介绍:
The aim of the Iranian Journal of Science and Technology is to foster the growth of scientific research among Iranian engineers and scientists and to provide a medium by means of which the fruits of these researches may be brought to the attention of the world’s civil Engineering communities. This transaction focuses on all aspects of Civil Engineering
and will accept the original research contributions (previously unpublished) from all areas of established engineering disciplines. The papers may be theoretical, experimental or both. The journal publishes original papers within the broad field of civil engineering which include, but are not limited to, the following:
-Structural engineering-
Earthquake engineering-
Concrete engineering-
Construction management-
Steel structures-
Engineering mechanics-
Water resources engineering-
Hydraulic engineering-
Hydraulic structures-
Environmental engineering-
Soil mechanics-
Foundation engineering-
Geotechnical engineering-
Transportation engineering-
Surveying and geomatics.