{"title":"独立于型号的拒收跟踪测试","authors":"Maciej Gazda, Robert M. Hierons","doi":"10.1016/j.scico.2024.103173","DOIUrl":null,"url":null,"abstract":"<div><p>Software Testing is normally one of the main forms of verification and validation used in software development but it is often manual and so expensive and error prone. One of the proposed solutions to this is to use model-based testing, in which testing is based on a model of how the system should behave. If the model has a formal semantics, then there is potential to automate systematic test generation. In this paper we consider the case where the semantics of the model is a set of refusal traces, also called failure traces. We show how the notions of fundamental refusal and fundamental refusal trace can be used to derive a normalised transition system, which we call an <em>observation transition system</em> (OTS), from the semantics. We then show how, if this OTS has finitely many states, and we are given a bound <em>m</em>, one can produce a corresponding complete test suite: one that is guaranteed to determine correctness as long as the number of states of the OTS defined by the semantics of the system under test has no more than <em>m</em> states. In practice, the choice of value for <em>m</em> might be based on domain knowledge or a cost-benefit analysis. As far as we are aware, this is the first work to show how a finite complete test suite can be derived when the semantics under consideration is a set of refusal traces.</p></div>","PeriodicalId":49561,"journal":{"name":"Science of Computer Programming","volume":"239 ","pages":"Article 103173"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167642324000960/pdfft?md5=424d76b3b101250fcecfac3f3f518da6&pid=1-s2.0-S0167642324000960-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Model independent refusal trace testing\",\"authors\":\"Maciej Gazda, Robert M. Hierons\",\"doi\":\"10.1016/j.scico.2024.103173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Software Testing is normally one of the main forms of verification and validation used in software development but it is often manual and so expensive and error prone. One of the proposed solutions to this is to use model-based testing, in which testing is based on a model of how the system should behave. If the model has a formal semantics, then there is potential to automate systematic test generation. In this paper we consider the case where the semantics of the model is a set of refusal traces, also called failure traces. We show how the notions of fundamental refusal and fundamental refusal trace can be used to derive a normalised transition system, which we call an <em>observation transition system</em> (OTS), from the semantics. We then show how, if this OTS has finitely many states, and we are given a bound <em>m</em>, one can produce a corresponding complete test suite: one that is guaranteed to determine correctness as long as the number of states of the OTS defined by the semantics of the system under test has no more than <em>m</em> states. In practice, the choice of value for <em>m</em> might be based on domain knowledge or a cost-benefit analysis. As far as we are aware, this is the first work to show how a finite complete test suite can be derived when the semantics under consideration is a set of refusal traces.</p></div>\",\"PeriodicalId\":49561,\"journal\":{\"name\":\"Science of Computer Programming\",\"volume\":\"239 \",\"pages\":\"Article 103173\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167642324000960/pdfft?md5=424d76b3b101250fcecfac3f3f518da6&pid=1-s2.0-S0167642324000960-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Computer Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167642324000960\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Computer Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167642324000960","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Software Testing is normally one of the main forms of verification and validation used in software development but it is often manual and so expensive and error prone. One of the proposed solutions to this is to use model-based testing, in which testing is based on a model of how the system should behave. If the model has a formal semantics, then there is potential to automate systematic test generation. In this paper we consider the case where the semantics of the model is a set of refusal traces, also called failure traces. We show how the notions of fundamental refusal and fundamental refusal trace can be used to derive a normalised transition system, which we call an observation transition system (OTS), from the semantics. We then show how, if this OTS has finitely many states, and we are given a bound m, one can produce a corresponding complete test suite: one that is guaranteed to determine correctness as long as the number of states of the OTS defined by the semantics of the system under test has no more than m states. In practice, the choice of value for m might be based on domain knowledge or a cost-benefit analysis. As far as we are aware, this is the first work to show how a finite complete test suite can be derived when the semantics under consideration is a set of refusal traces.
期刊介绍:
Science of Computer Programming is dedicated to the distribution of research results in the areas of software systems development, use and maintenance, including the software aspects of hardware design.
The journal has a wide scope ranging from the many facets of methodological foundations to the details of technical issues andthe aspects of industrial practice.
The subjects of interest to SCP cover the entire spectrum of methods for the entire life cycle of software systems, including
• Requirements, specification, design, validation, verification, coding, testing, maintenance, metrics and renovation of software;
• Design, implementation and evaluation of programming languages;
• Programming environments, development tools, visualisation and animation;
• Management of the development process;
• Human factors in software, software for social interaction, software for social computing;
• Cyber physical systems, and software for the interaction between the physical and the machine;
• Software aspects of infrastructure services, system administration, and network management.