Francesco Dell'Accio , Filomena Di Tommaso , Elisa Francomano
{"title":"解决有奇点的椭圆问题的富集多节点谢泼德配位法","authors":"Francesco Dell'Accio , Filomena Di Tommaso , Elisa Francomano","doi":"10.1016/j.apnum.2024.07.005","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the multinode Shepard method is adopted for the first time to numerically solve a differential problem with a discontinuity in the boundary. Starting from previous studies on elliptic boundary value problems, here the Shepard method is employed to catch the singularity on the boundary. Enrichments of the functional space spanned by the multinode cardinal Shepard basis functions are proposed to overcome the difficulties encountered. The Motz's problem is considered as numerical benchmark to assess the method. Numerical results are presented to show the effectiveness of the proposed approach.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"205 ","pages":"Pages 87-100"},"PeriodicalIF":2.2000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168927424001776/pdfft?md5=bad5b96a018721e6a24777c89fe88152&pid=1-s2.0-S0168927424001776-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The enriched multinode Shepard collocation method for solving elliptic problems with singularities\",\"authors\":\"Francesco Dell'Accio , Filomena Di Tommaso , Elisa Francomano\",\"doi\":\"10.1016/j.apnum.2024.07.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the multinode Shepard method is adopted for the first time to numerically solve a differential problem with a discontinuity in the boundary. Starting from previous studies on elliptic boundary value problems, here the Shepard method is employed to catch the singularity on the boundary. Enrichments of the functional space spanned by the multinode cardinal Shepard basis functions are proposed to overcome the difficulties encountered. The Motz's problem is considered as numerical benchmark to assess the method. Numerical results are presented to show the effectiveness of the proposed approach.</p></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"205 \",\"pages\":\"Pages 87-100\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001776/pdfft?md5=bad5b96a018721e6a24777c89fe88152&pid=1-s2.0-S0168927424001776-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001776\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001776","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The enriched multinode Shepard collocation method for solving elliptic problems with singularities
In this paper, the multinode Shepard method is adopted for the first time to numerically solve a differential problem with a discontinuity in the boundary. Starting from previous studies on elliptic boundary value problems, here the Shepard method is employed to catch the singularity on the boundary. Enrichments of the functional space spanned by the multinode cardinal Shepard basis functions are proposed to overcome the difficulties encountered. The Motz's problem is considered as numerical benchmark to assess the method. Numerical results are presented to show the effectiveness of the proposed approach.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.