{"title":"基于模糊 AHP-VIKOR 的安全关键系统风险分析框架:核电站案例研究","authors":"Anwesa Das , Vinay Kumar , Subrata Dutta","doi":"10.1016/j.anucene.2024.110841","DOIUrl":null,"url":null,"abstract":"<div><p>The critical systems in industries such as nuclear power plants rely on various preventive methods to minimize failures or risks through efficient strategies and equipment. However, in many businesses, maintenance tasks are carried out infrequently, improperly, and without consideration for the overall state of the plant or its equipment. To choose the appropriate risk preventive approach, a thorough examination of each component’s risks in a sequential manner becomes imperative. This paper introduces the Fuzzy Analytic Hierarchy Process (AHP)-VIKOR technique, a Multicriteria Decision Making Approach employed to rank the various risks prevalent in the nuclear power industry. By identifying the proper sequence of risks, this approach aims to reduce the occurrence of unfortunate mishaps, along with minimizing recovery time and costs. Five experienced researchers and experts assessed the impact of risk based on three risk criteria: Severity, Occurrence, and Detection. Utilizing the opinions and judgments of these experts, the Fuzzy AHP-VIKOR approach was employed to calculate the weight of each performance criterion and the ranking of each risk or hazard. The suggested method is designed to assist supervisors in resolving discrete problems characterized by incommensurable and conflicting criteria. This study contributes to the industry by providing a higher risk analysis incorporating various performance parameters. The paper concludes by presenting a result with the priorities of all risks in the industry using the fuzzy AHP-VIKOR method.</p></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fuzzy-based AHP-VIKOR framework for risk analysis of safety-critical systems: A case study of nuclear power plant\",\"authors\":\"Anwesa Das , Vinay Kumar , Subrata Dutta\",\"doi\":\"10.1016/j.anucene.2024.110841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The critical systems in industries such as nuclear power plants rely on various preventive methods to minimize failures or risks through efficient strategies and equipment. However, in many businesses, maintenance tasks are carried out infrequently, improperly, and without consideration for the overall state of the plant or its equipment. To choose the appropriate risk preventive approach, a thorough examination of each component’s risks in a sequential manner becomes imperative. This paper introduces the Fuzzy Analytic Hierarchy Process (AHP)-VIKOR technique, a Multicriteria Decision Making Approach employed to rank the various risks prevalent in the nuclear power industry. By identifying the proper sequence of risks, this approach aims to reduce the occurrence of unfortunate mishaps, along with minimizing recovery time and costs. Five experienced researchers and experts assessed the impact of risk based on three risk criteria: Severity, Occurrence, and Detection. Utilizing the opinions and judgments of these experts, the Fuzzy AHP-VIKOR approach was employed to calculate the weight of each performance criterion and the ranking of each risk or hazard. The suggested method is designed to assist supervisors in resolving discrete problems characterized by incommensurable and conflicting criteria. This study contributes to the industry by providing a higher risk analysis incorporating various performance parameters. The paper concludes by presenting a result with the priorities of all risks in the industry using the fuzzy AHP-VIKOR method.</p></div>\",\"PeriodicalId\":8006,\"journal\":{\"name\":\"Annals of Nuclear Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306454924005048\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454924005048","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
A fuzzy-based AHP-VIKOR framework for risk analysis of safety-critical systems: A case study of nuclear power plant
The critical systems in industries such as nuclear power plants rely on various preventive methods to minimize failures or risks through efficient strategies and equipment. However, in many businesses, maintenance tasks are carried out infrequently, improperly, and without consideration for the overall state of the plant or its equipment. To choose the appropriate risk preventive approach, a thorough examination of each component’s risks in a sequential manner becomes imperative. This paper introduces the Fuzzy Analytic Hierarchy Process (AHP)-VIKOR technique, a Multicriteria Decision Making Approach employed to rank the various risks prevalent in the nuclear power industry. By identifying the proper sequence of risks, this approach aims to reduce the occurrence of unfortunate mishaps, along with minimizing recovery time and costs. Five experienced researchers and experts assessed the impact of risk based on three risk criteria: Severity, Occurrence, and Detection. Utilizing the opinions and judgments of these experts, the Fuzzy AHP-VIKOR approach was employed to calculate the weight of each performance criterion and the ranking of each risk or hazard. The suggested method is designed to assist supervisors in resolving discrete problems characterized by incommensurable and conflicting criteria. This study contributes to the industry by providing a higher risk analysis incorporating various performance parameters. The paper concludes by presenting a result with the priorities of all risks in the industry using the fuzzy AHP-VIKOR method.
期刊介绍:
Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.