{"title":"用于解决多组中子输运 k 特征值问题的二维离散序数法的傅立叶分析","authors":"","doi":"10.1016/j.pnucene.2024.105343","DOIUrl":null,"url":null,"abstract":"<div><p>Convergence study of two-dimensional discrete ordinates (SN) method has been carried out by Fourier analysis for single-group neutron transport k-eigenvalue problems. However, conclusions and improved coarse mesh finite difference (CMFD) acceleration method derived from single-group Fourier analysis are not fully applicable to the realistic multigroup problems. The convergence characteristic of two-dimensional SN for multigroup problems has not been systematically investigated, which is an important work that complements the existing studies. In this study, a Fourier analysis for solving multigroup neutron transport k-eigenvalue problems is performed. Firstly, the influence of multigroup structure is analyzed and results show that when neglecting the intergroup scattering, the spectral radius of multigroup case is the maximum value of all the single-group cases. Then, the effects of scattering ratio on the convergence behavior are presented. Fourier analysis results show that when increasing the within-group scattering ratio, the spectral radius of the whole iteration decreases. While for the intergroup scattering ratio, the phenomenon is totally opposite. When increasing the intergroup scattering ratio, the spectral radius increases. Lastly, the diffusive coefficient of CMFD is guided based on the Fourier analysis results, which considering the influences of the intergroup scattering. Numerical results show that improved CMFD achieves better convergence performance for 2D C5G7 benchmark and especially for high intergroup scattering problems.</p></div>","PeriodicalId":20617,"journal":{"name":"Progress in Nuclear Energy","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fourier analysis of two-dimensional discrete ordinates method for solving multigroup neutron transport k-eigenvalue problems\",\"authors\":\"\",\"doi\":\"10.1016/j.pnucene.2024.105343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Convergence study of two-dimensional discrete ordinates (SN) method has been carried out by Fourier analysis for single-group neutron transport k-eigenvalue problems. However, conclusions and improved coarse mesh finite difference (CMFD) acceleration method derived from single-group Fourier analysis are not fully applicable to the realistic multigroup problems. The convergence characteristic of two-dimensional SN for multigroup problems has not been systematically investigated, which is an important work that complements the existing studies. In this study, a Fourier analysis for solving multigroup neutron transport k-eigenvalue problems is performed. Firstly, the influence of multigroup structure is analyzed and results show that when neglecting the intergroup scattering, the spectral radius of multigroup case is the maximum value of all the single-group cases. Then, the effects of scattering ratio on the convergence behavior are presented. Fourier analysis results show that when increasing the within-group scattering ratio, the spectral radius of the whole iteration decreases. While for the intergroup scattering ratio, the phenomenon is totally opposite. When increasing the intergroup scattering ratio, the spectral radius increases. Lastly, the diffusive coefficient of CMFD is guided based on the Fourier analysis results, which considering the influences of the intergroup scattering. Numerical results show that improved CMFD achieves better convergence performance for 2D C5G7 benchmark and especially for high intergroup scattering problems.</p></div>\",\"PeriodicalId\":20617,\"journal\":{\"name\":\"Progress in Nuclear Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Nuclear Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0149197024002932\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149197024002932","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
通过对单组中子输运 k 特征值问题的傅立叶分析,对二维离散序数(SN)方法进行了收敛性研究。然而,从单组傅里叶分析中得出的结论和改进的粗网格有限差分(CMFD)加速方法并不完全适用于现实的多组问题。二维 SN 对多组问题的收敛特性尚未得到系统研究,这是补充现有研究的一项重要工作。本研究对求解多组中子输运 k 特征值问题进行了傅立叶分析。首先,分析了多组结构的影响,结果表明,当忽略组间散射时,多组情况下的谱半径是所有单组情况下的最大值。然后,介绍了散射比对收敛行为的影响。傅立叶分析结果表明,当组内散射比增大时,整个迭代的频谱半径减小。而对于组间散射比,现象则完全相反。当组间散射比增大时,光谱半径增大。最后,根据傅立叶分析结果,考虑到组间散射的影响,对 CMFD 的扩散系数进行了引导。数值结果表明,改进后的 CMFD 在二维 C5G7 基准,尤其是高组间散射问题上取得了更好的收敛性能。
Fourier analysis of two-dimensional discrete ordinates method for solving multigroup neutron transport k-eigenvalue problems
Convergence study of two-dimensional discrete ordinates (SN) method has been carried out by Fourier analysis for single-group neutron transport k-eigenvalue problems. However, conclusions and improved coarse mesh finite difference (CMFD) acceleration method derived from single-group Fourier analysis are not fully applicable to the realistic multigroup problems. The convergence characteristic of two-dimensional SN for multigroup problems has not been systematically investigated, which is an important work that complements the existing studies. In this study, a Fourier analysis for solving multigroup neutron transport k-eigenvalue problems is performed. Firstly, the influence of multigroup structure is analyzed and results show that when neglecting the intergroup scattering, the spectral radius of multigroup case is the maximum value of all the single-group cases. Then, the effects of scattering ratio on the convergence behavior are presented. Fourier analysis results show that when increasing the within-group scattering ratio, the spectral radius of the whole iteration decreases. While for the intergroup scattering ratio, the phenomenon is totally opposite. When increasing the intergroup scattering ratio, the spectral radius increases. Lastly, the diffusive coefficient of CMFD is guided based on the Fourier analysis results, which considering the influences of the intergroup scattering. Numerical results show that improved CMFD achieves better convergence performance for 2D C5G7 benchmark and especially for high intergroup scattering problems.
期刊介绍:
Progress in Nuclear Energy is an international review journal covering all aspects of nuclear science and engineering. In keeping with the maturity of nuclear power, articles on safety, siting and environmental problems are encouraged, as are those associated with economics and fuel management. However, basic physics and engineering will remain an important aspect of the editorial policy. Articles published are either of a review nature or present new material in more depth. They are aimed at researchers and technically-oriented managers working in the nuclear energy field.
Please note the following:
1) PNE seeks high quality research papers which are medium to long in length. Short research papers should be submitted to the journal Annals in Nuclear Energy.
2) PNE reserves the right to reject papers which are based solely on routine application of computer codes used to produce reactor designs or explain existing reactor phenomena. Such papers, although worthy, are best left as laboratory reports whereas Progress in Nuclear Energy seeks papers of originality, which are archival in nature, in the fields of mathematical and experimental nuclear technology, including fission, fusion (blanket physics, radiation damage), safety, materials aspects, economics, etc.
3) Review papers, which may occasionally be invited, are particularly sought by the journal in these fields.