利用机器学习方法预测可持续智慧城市的用电量

IF 6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Internet of Things Pub Date : 2024-08-06 DOI:10.1016/j.iot.2024.101322
Darius Peteleaza , Alexandru Matei , Radu Sorostinean , Arpad Gellert , Ugo Fiore , Bala-Constantin Zamfirescu , Francesco Palmieri
{"title":"利用机器学习方法预测可持续智慧城市的用电量","authors":"Darius Peteleaza ,&nbsp;Alexandru Matei ,&nbsp;Radu Sorostinean ,&nbsp;Arpad Gellert ,&nbsp;Ugo Fiore ,&nbsp;Bala-Constantin Zamfirescu ,&nbsp;Francesco Palmieri","doi":"10.1016/j.iot.2024.101322","DOIUrl":null,"url":null,"abstract":"<div><p>Integrating smart grids in smart cities is pivotal for enhancing urban sustainability and efficiency. Smart grids enable bidirectional communication between consumers and utilities, enabling real-time monitoring and management of electricity flows. This integration yields benefits such as improved energy efficiency, incorporation of renewable sources, and informed decision-making for city planners. At the city scale, forecasting electricity consumption is crucial for effective resource planning and infrastructure development. This study proposes using a time-series dense encoder model for short-term and long-term forecasting at the city level, showing its superior performance compared to traditional approaches like recurrent neural networks and statistical methods. Hyperparameters are optimized using the non-dominated sorting genetic algorithm. The model’s efficacy is demonstrated on a six-year dataset, highlighting its potential to significantly improve electricity consumption forecasting and enhance urban energy system efficiency.</p></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"27 ","pages":"Article 101322"},"PeriodicalIF":6.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542660524002634/pdfft?md5=c2ed679b327cd4937d0d73a4198bec1b&pid=1-s2.0-S2542660524002634-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Electricity consumption forecasting for sustainable smart cities using machine learning methods\",\"authors\":\"Darius Peteleaza ,&nbsp;Alexandru Matei ,&nbsp;Radu Sorostinean ,&nbsp;Arpad Gellert ,&nbsp;Ugo Fiore ,&nbsp;Bala-Constantin Zamfirescu ,&nbsp;Francesco Palmieri\",\"doi\":\"10.1016/j.iot.2024.101322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Integrating smart grids in smart cities is pivotal for enhancing urban sustainability and efficiency. Smart grids enable bidirectional communication between consumers and utilities, enabling real-time monitoring and management of electricity flows. This integration yields benefits such as improved energy efficiency, incorporation of renewable sources, and informed decision-making for city planners. At the city scale, forecasting electricity consumption is crucial for effective resource planning and infrastructure development. This study proposes using a time-series dense encoder model for short-term and long-term forecasting at the city level, showing its superior performance compared to traditional approaches like recurrent neural networks and statistical methods. Hyperparameters are optimized using the non-dominated sorting genetic algorithm. The model’s efficacy is demonstrated on a six-year dataset, highlighting its potential to significantly improve electricity consumption forecasting and enhance urban energy system efficiency.</p></div>\",\"PeriodicalId\":29968,\"journal\":{\"name\":\"Internet of Things\",\"volume\":\"27 \",\"pages\":\"Article 101322\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2542660524002634/pdfft?md5=c2ed679b327cd4937d0d73a4198bec1b&pid=1-s2.0-S2542660524002634-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542660524002634\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660524002634","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在智慧城市中整合智能电网对于提高城市的可持续性和效率至关重要。智能电网实现了消费者与公用事业之间的双向通信,能够对电力流进行实时监控和管理。这种整合带来的好处包括提高能源效率、采用可再生能源以及为城市规划者提供知情决策。在城市范围内,预测用电量对于有效的资源规划和基础设施发展至关重要。本研究建议使用时间序列密集编码器模型进行城市级别的短期和长期预测,结果显示,与递归神经网络和统计方法等传统方法相比,该模型性能更优。超参数采用非支配排序遗传算法进行优化。该模型在六年的数据集上证明了其有效性,突出了其在显著改善用电量预测和提高城市能源系统效率方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electricity consumption forecasting for sustainable smart cities using machine learning methods

Integrating smart grids in smart cities is pivotal for enhancing urban sustainability and efficiency. Smart grids enable bidirectional communication between consumers and utilities, enabling real-time monitoring and management of electricity flows. This integration yields benefits such as improved energy efficiency, incorporation of renewable sources, and informed decision-making for city planners. At the city scale, forecasting electricity consumption is crucial for effective resource planning and infrastructure development. This study proposes using a time-series dense encoder model for short-term and long-term forecasting at the city level, showing its superior performance compared to traditional approaches like recurrent neural networks and statistical methods. Hyperparameters are optimized using the non-dominated sorting genetic algorithm. The model’s efficacy is demonstrated on a six-year dataset, highlighting its potential to significantly improve electricity consumption forecasting and enhance urban energy system efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
期刊最新文献
Mitigating smart contract vulnerabilities in electronic toll collection using blockchain security LBTMA: An integrated P4-enabled framework for optimized traffic management in SD-IoT networks AI-based autonomous UAV swarm system for weed detection and treatment: Enhancing organic orange orchard efficiency with agriculture 5.0 A consortium blockchain-edge enabled authentication scheme for underwater acoustic network (UAN) Is artificial intelligence a new battleground for cybersecurity?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1