Darius Peteleaza , Alexandru Matei , Radu Sorostinean , Arpad Gellert , Ugo Fiore , Bala-Constantin Zamfirescu , Francesco Palmieri
{"title":"利用机器学习方法预测可持续智慧城市的用电量","authors":"Darius Peteleaza , Alexandru Matei , Radu Sorostinean , Arpad Gellert , Ugo Fiore , Bala-Constantin Zamfirescu , Francesco Palmieri","doi":"10.1016/j.iot.2024.101322","DOIUrl":null,"url":null,"abstract":"<div><p>Integrating smart grids in smart cities is pivotal for enhancing urban sustainability and efficiency. Smart grids enable bidirectional communication between consumers and utilities, enabling real-time monitoring and management of electricity flows. This integration yields benefits such as improved energy efficiency, incorporation of renewable sources, and informed decision-making for city planners. At the city scale, forecasting electricity consumption is crucial for effective resource planning and infrastructure development. This study proposes using a time-series dense encoder model for short-term and long-term forecasting at the city level, showing its superior performance compared to traditional approaches like recurrent neural networks and statistical methods. Hyperparameters are optimized using the non-dominated sorting genetic algorithm. The model’s efficacy is demonstrated on a six-year dataset, highlighting its potential to significantly improve electricity consumption forecasting and enhance urban energy system efficiency.</p></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"27 ","pages":"Article 101322"},"PeriodicalIF":6.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542660524002634/pdfft?md5=c2ed679b327cd4937d0d73a4198bec1b&pid=1-s2.0-S2542660524002634-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Electricity consumption forecasting for sustainable smart cities using machine learning methods\",\"authors\":\"Darius Peteleaza , Alexandru Matei , Radu Sorostinean , Arpad Gellert , Ugo Fiore , Bala-Constantin Zamfirescu , Francesco Palmieri\",\"doi\":\"10.1016/j.iot.2024.101322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Integrating smart grids in smart cities is pivotal for enhancing urban sustainability and efficiency. Smart grids enable bidirectional communication between consumers and utilities, enabling real-time monitoring and management of electricity flows. This integration yields benefits such as improved energy efficiency, incorporation of renewable sources, and informed decision-making for city planners. At the city scale, forecasting electricity consumption is crucial for effective resource planning and infrastructure development. This study proposes using a time-series dense encoder model for short-term and long-term forecasting at the city level, showing its superior performance compared to traditional approaches like recurrent neural networks and statistical methods. Hyperparameters are optimized using the non-dominated sorting genetic algorithm. The model’s efficacy is demonstrated on a six-year dataset, highlighting its potential to significantly improve electricity consumption forecasting and enhance urban energy system efficiency.</p></div>\",\"PeriodicalId\":29968,\"journal\":{\"name\":\"Internet of Things\",\"volume\":\"27 \",\"pages\":\"Article 101322\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2542660524002634/pdfft?md5=c2ed679b327cd4937d0d73a4198bec1b&pid=1-s2.0-S2542660524002634-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542660524002634\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660524002634","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Electricity consumption forecasting for sustainable smart cities using machine learning methods
Integrating smart grids in smart cities is pivotal for enhancing urban sustainability and efficiency. Smart grids enable bidirectional communication between consumers and utilities, enabling real-time monitoring and management of electricity flows. This integration yields benefits such as improved energy efficiency, incorporation of renewable sources, and informed decision-making for city planners. At the city scale, forecasting electricity consumption is crucial for effective resource planning and infrastructure development. This study proposes using a time-series dense encoder model for short-term and long-term forecasting at the city level, showing its superior performance compared to traditional approaches like recurrent neural networks and statistical methods. Hyperparameters are optimized using the non-dominated sorting genetic algorithm. The model’s efficacy is demonstrated on a six-year dataset, highlighting its potential to significantly improve electricity consumption forecasting and enhance urban energy system efficiency.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.