Shao-Min Wang, Qian Zhang, Yi-Tao Li, Si-Chao Liu and Qing-Yuan Yang*,
{"title":"利用具有开放金属位的 M-MOF-74 对三氟化氮 (NF3) 进行破坏性吸附","authors":"Shao-Min Wang, Qian Zhang, Yi-Tao Li, Si-Chao Liu and Qing-Yuan Yang*, ","doi":"10.1021/cbe.3c0009610.1021/cbe.3c00096","DOIUrl":null,"url":null,"abstract":"<p >Using solid adsorbents for the destructive sorption of nitrogen trifluoride (NF<sub>3</sub>) presents a potential solution to its dual challenges as a potent greenhouse gas and hazardous compound in microelectronics. In this study, a series of MOFs (M-MOF-74, M = Mg, Co, Ni, Zn) with open metal sites (OMSs) are utilized for NF<sub>3</sub> adsorption. By employing single-component adsorption isotherms and the ideal adsorbed solution theory (IAST) selectivity calculations, the adsorption performance of various adsorbents is evaluated. The results indicate that Mg, Co, and Ni-MOF-74 exhibit high adsorption capacities for NF<sub>3</sub>, while Zn-MOF-74 shows a lower adsorption capacity, likely due to the weaker Lewis acidity of Zn<sup>2+</sup>. Experimental findings from PXRD and gas adsorption studies indicate structural pore alteration in the MOF-74 series following NF<sub>3</sub> gas adsorption. Theoretical computational analyses reveal that the MOF-74 series has a higher adsorption affinity for NF<sub>3</sub> compared to N<sub>2</sub>. This research provides insights into the use of efficient MOF sorbents for the destructive adsorption of NF<sub>3</sub>.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"1 6","pages":"535–540 535–540"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbe.3c00096","citationCount":"0","resultStr":"{\"title\":\"Destructive Adsorption of Nitrogen Trifluoride (NF3) Using M-MOF-74 with Open Metal Sites\",\"authors\":\"Shao-Min Wang, Qian Zhang, Yi-Tao Li, Si-Chao Liu and Qing-Yuan Yang*, \",\"doi\":\"10.1021/cbe.3c0009610.1021/cbe.3c00096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Using solid adsorbents for the destructive sorption of nitrogen trifluoride (NF<sub>3</sub>) presents a potential solution to its dual challenges as a potent greenhouse gas and hazardous compound in microelectronics. In this study, a series of MOFs (M-MOF-74, M = Mg, Co, Ni, Zn) with open metal sites (OMSs) are utilized for NF<sub>3</sub> adsorption. By employing single-component adsorption isotherms and the ideal adsorbed solution theory (IAST) selectivity calculations, the adsorption performance of various adsorbents is evaluated. The results indicate that Mg, Co, and Ni-MOF-74 exhibit high adsorption capacities for NF<sub>3</sub>, while Zn-MOF-74 shows a lower adsorption capacity, likely due to the weaker Lewis acidity of Zn<sup>2+</sup>. Experimental findings from PXRD and gas adsorption studies indicate structural pore alteration in the MOF-74 series following NF<sub>3</sub> gas adsorption. Theoretical computational analyses reveal that the MOF-74 series has a higher adsorption affinity for NF<sub>3</sub> compared to N<sub>2</sub>. This research provides insights into the use of efficient MOF sorbents for the destructive adsorption of NF<sub>3</sub>.</p>\",\"PeriodicalId\":100230,\"journal\":{\"name\":\"Chem & Bio Engineering\",\"volume\":\"1 6\",\"pages\":\"535–540 535–540\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/cbe.3c00096\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem & Bio Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/cbe.3c00096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem & Bio Engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbe.3c00096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Destructive Adsorption of Nitrogen Trifluoride (NF3) Using M-MOF-74 with Open Metal Sites
Using solid adsorbents for the destructive sorption of nitrogen trifluoride (NF3) presents a potential solution to its dual challenges as a potent greenhouse gas and hazardous compound in microelectronics. In this study, a series of MOFs (M-MOF-74, M = Mg, Co, Ni, Zn) with open metal sites (OMSs) are utilized for NF3 adsorption. By employing single-component adsorption isotherms and the ideal adsorbed solution theory (IAST) selectivity calculations, the adsorption performance of various adsorbents is evaluated. The results indicate that Mg, Co, and Ni-MOF-74 exhibit high adsorption capacities for NF3, while Zn-MOF-74 shows a lower adsorption capacity, likely due to the weaker Lewis acidity of Zn2+. Experimental findings from PXRD and gas adsorption studies indicate structural pore alteration in the MOF-74 series following NF3 gas adsorption. Theoretical computational analyses reveal that the MOF-74 series has a higher adsorption affinity for NF3 compared to N2. This research provides insights into the use of efficient MOF sorbents for the destructive adsorption of NF3.